
Energy Efficient Redundant Configurations

for Reliable Parallel Servers ?

Dakai Zhu a,∗ , Rami Melhem b and Daniel Mossé b

aDepartment of Computer Science, University of Texas at San Antonio

bDepartment of Computer Science, University of Pittsburgh

Abstract

Modular redundancy and temporal redundancy are traditional techniques to in-

crease system reliability. In addition to being used as temporal redundancy, with

technology advancements, slack time can also be used by energy management schemes

to save energy. In this paper, we consider the combination of modular and tempo-

ral redundancy for reliable service provided by multiple servers. We first propose

an efficient adaptive parallel recovery scheme that appropriately processes service

requests in parallel to increase the number of faults that can be tolerated and thus

system reliability. Then we explore schemes to determine the optimal redundant

configurations of the parallel servers to minimize system energy consumption for a

given reliability goal or to maximize system reliability for a given energy budget.

Our analysis shows that parallel recovery, small requests and optimistic approaches

favor lower levels of modular redundancy, while restricted serial recovery, large re-

quests and pessimistic approaches favor higher levels of modular redundancy.

Key words: Energy Management, Redundancy, Parallel Recovery, Reliable Servers

? A preliminary version of the paper has appeared in EDCC’05
∗ Corresponding author; part of the work was done while the author was a Ph.D.

student at the University of Pittsburgh

Preprint submitted to Elsevier Science 5 October 2006

1 Introduction

The performance of modern computing systems has increased at the expense

of drastically increased power consumption. In addition to embedded systems

that are generally battery powered and have limited energy budget (e.g., com-

plex satellite and surveillance systems), the increased power consumption has

recently caught people’s attention for large systems that consist of multiple

processing units (e.g., data warehouses or web server farms) due to excessive

heat dissipation and the associated complex packaging and cooling cost. More-

over, if the generated heat cannot be properly removed, it will also increase

the system temperature and thus decrease system reliability.

Fault tolerance is an important requirement for reliable systems, which, in

general, is achieved by exploring redundancy techniques. While modular re-

dundancy can be used to detect and/or mask permanent faults by executing

an application on several processing units in parallel, temporal redundancy

can be explored to re-execute an faulty application due to transient faults and

increase system reliability [17]. For extremely high reliable services, we may

combine modular and temporal redundancy. That is, when no majority result

is obtained on modular redundant processing units during the processing of

an application, we can further explore temporal redundancy to re-execute it

and increase the reliability instead of declaring a failure [21].

In addition to temporal redundancy, slack time can also be used by dynamic

voltage scaling (DVS) (an popular and widely used energy management tech-

nique) to scale down system processing speed and supply voltage for saving

energy [25,27]. When more slack time is reserved as temporal redundancy for

higher system reliability, less slack will be available for energy management.

Therefore, there is an interesting trade-off between energy consumption and

system reliability. Although fault tolerance through redundancy and energy

2

management through DVS have been well studied separately, there is rela-

tively less work addressing the combination problem of fault tolerance and

energy management [6,16,24,28–31]. For systems where both lower levels of

energy consumption and higher levels of reliability are important, managing

the system reliability and energy consumption together is necessary.

A number of studies have reported that transient faults occur much more

frequently than permanent faults [3,12]. In this paper, focusing on tolerating

transient faults, we consider event-driven reliable services (e.g., bank or stock

transactions and signal processing on satellites) that are processed redun-

dantly on multiple servers. For systems with fixed number of servers, higher

levels of modular redundancy lead to fewer redundant server groups, which in

turn need more time to process a given workload and result in less available

slack time. However, redundant server groups with higher levels of modular

redundancy can mask and tolerate more faults, which may need less tempo-

ral redundancy for the recovery of a given number of faults to be tolerated

and leave more slack for energy management. For a given workload (i.e., the

number of service requests in a fixed interval), considering the static leakage

power consumed by each server, lower levels of modular redundancy may be

more energy efficient and not all available servers will be used [5,26].

1.1 Related Work

The idea of trading processing speed for energy savings was first proposed

by Weiser et al. in [25], where processor frequency (and corresponding supply

voltage) is adjusted using utilization based predictions. Although the energy

management for single-processor systems has been studied extensively based

on dynamic voltage scaling (DVS) techniques, the energy management for

parallel servers, where heat generated and cooling costs are big problems, has

caught people’s attention only recently. In [1], Bohrer et al. presented a case of

3

managing power consumption in web servers. Elnozahy et al. evaluated policies

that combine DVS and on/off techniques for cluster-wide power management

in server farms [5,15]. Considering the effects of static power and discrete

processing frequencies, Xu et al. proposed schemes that adjust the number

of active servers based on the system load [26]. Sharma et al. investigated

adaptive algorithms for voltage scaling in QoS-enabled web servers to minimize

energy consumption subject to service delay constraints [20].

When combining fault tolerance and energy management, for independent

periodic tasks, using the primary/backup model, Unsal et al. proposed an

energy-aware software-based fault tolerance scheme which postpones as much

as possible the execution of backup tasks to minimize the overlap of primary

and backup execution and thus to minimize energy consumption [24]. For Du-

plex systems (where two concurrent hardware platforms run the same software

for fault detection), Melhem et al. explored the optimal number of checkpoints,

uniformly or non-uniformly distributed, to achieve minimum energy consump-

tion [16]. Elnozahy et al. proposed an Optimistic-TMR (OTMR) scheme to

reduce the energy consumption for traditional TMR (Triple Modular Redun-

dancy, in which three hardware platforms run the same software simultane-

ously to detect and mask faults) systems by allowing one processing unit to

slow down provided that it can catch up and finish the computation before the

deadline if there is a fault [6]. In [31], Zhu et al. further explored the optimal

frequency setting for OTMR and presented detailed comparisons among Du-

plex, TMR and OTMR on reliability and energy consumption. Combined with

voltage scaling techniques, Zhang et al. have proposed an adaptive checkpoint-

ing scheme to tolerate a fixed number of transient faults and save energy for

serial applications [28]. The work was further extended to periodic real-time

tasks in [29]. Considering the effects of energy management on fault rates, Zhu

et al. explored the interplay between energy and reliability in [30].

4

In this paper, we explore the optimal redundant configuration for parallel

servers to either minimize system energy consumption for a given reliability

goal (e.g., to tolerate a certain number of faults within the interval considered)

or to maximize system reliability with a limit energy budget. To this end, we

first propose an efficient adaptive parallel recovery scheme that appropriately

processes service requests in parallel to increase the number of faults that can

be tolerated and thus system reliability. Then, we extend our research results

to combine the recovery schemes and redundancy techniques. In this context,

an optimal redundant configuration specifies the level of modular redundancy

employed, the number of active servers used (the unused servers are turned

off for energy efficiency), the frequency at which the active servers run and

the number of backup slots needed.

The remainder of this paper is organized as follows: the system models and

problem description are presented in Section 2. The recovery schemes are dis-

cussed in Section 3. The combination of modular redundancy and parallel

recovery is addressed in Section 4. Section 5 presents two schemes to de-

termine the optimal redundant configurations of parallel servers for energy

minimization and reliability maximization, respectively. The analysis results

are presented and discussed in Section 6 and Section 7 concludes the paper.

2 System Models and Problem Description

2.1 Power Model

The power in a server is mainly consumed by its processor, memory and the un-

derlying circuits. For CMOS-based variable-frequency processors, power con-

sumption is dominated by dynamic power dissipation, which is cubicly related

to the supply voltage and the processing speed [2]. As for memory, it can be

5

put into different power-saving sleep states with different response times [14].

For servers that employ variable speed processors [8,9] and low power memory

[18], the power consumption can be adjusted to satisfy different performance

requirements. Although dynamic power dominates in most components, the

static leakage power increases much faster than dynamic power with technol-

ogy advancements and thus cannot be ignored [22,23].

Considering the almost linear relation between processing frequency and sup-

ply voltage [2], voltage scaling techniques reduce the supply voltage for lower

frequencies [25,27]. In what follows, we use frequency scaling to stand for

changing both processing frequency and supply voltage. To incorporate all

power consuming components in a server and keep the power model simple,

we assume that a server has three different states: active, sleep and off [30,31].

The system is in the active state when it is serving a request. All static power

is consumed in the active state; however, a request may be processed at differ-

ent frequencies (with corresponding supply voltages) and consumes different

dynamic power. The sleep state is a power saving state that removes all dy-

namic power and most of the static power. Servers in the sleep state can react

quickly (e.g., in a few cycles) to new requests and the time to transit from

sleep state to active state is assumed to be negligible. A server consumes no

power in the off state. Therefore, for a server running at frequency f , its power

consumption can be modeled as [30,31]:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceff
m) (1)

where Ps is the sleep power; Pind and Pd are frequency-independent and frequency-

dependent active powers, respectively. Ps includes (but not limited to) the

power to maintain basic circuits, keep the clock running and the memory in

power saving sleep modes [14]. Pind consists of part of memory and processor

power as well as any power that can be efficiently removed by putting systems

6

into sleep state(s) and is independent of system supply voltages and process-

ing frequencies [8,14]. Pd includes processors dynamic power and any power

that depends on system processing frequencies and supply voltages [2].

h̄ equals 1 if the server is active and 0 otherwise. Cef and m are system depen-

dent constants. The maximum frequency-dependent active power corresponds

to the maximum processing frequency fmax and is given by Pmax
d = Ceff

m
max.

For convenience, the values of Ps and Pind are normalized to Pmax
d ; that is,

Ps = α · Pmax
d and Pind = β · Pmax

d . Moreover, we assume that continuous

frequency is used. For systems that have discrete frequencies, two adjacent

frequencies can be used to emulate any frequency as discussed in [11].

Notice that, less frequency-dependent energy is consumed at lower frequencies;

however, it takes more time to process a request and thus more sleep and

frequency-independent energy will be consumed. Therefore, due to the sleep

power and frequency-independent active power, there is an energy efficient

processing frequency at which the energy consumption to process a request is

minimized 1 [30,31]. Considering the large overhead of turning on/off a server

[1], we assume in this paper that the deployed servers are never turned off

and the sleep power Ps is not manageable (i.e., always consumed). Thus, the

energy efficient frequency can be easily found as [30,31]:

fee = m

√
β

m− 1
· fmax (2)

Notice that fee is solely determined by the system’s power characteristics and

is independent of requests to be processed. If flow is the lowest supported

processing frequency, the minimum energy efficient frequency is defined as

fmin = max{flow, fee}. That is, the CPU may be set to a frequency higher

than fee to meet an application’s deadline or to comply with the lowest fre-

1 We note that this conclusion has been also reached by several research groups,

though through different energy modeling techniques [6,7,10,13].

7

quency limitation. However, for energy efficiency, the CPU should never be

set to a frequency below fee. Moreover, for the case of β > m−1, we will have

fee > fmax, which means that no DVS is necessary and all requests should be

processed at the maximum frequency fmax to minimize the energy consump-

tion. For simplicity, in what follows, we assume that flow ≤ fee ≤ fmax (i.e.,

β ≤ m− 1).

2.2 Application Model and Problem Description

In general, the system load of an event-driven application is specified by the

service request average arrival rate, which is the number of requests over the

length of the interval considered. Although the service time for each individual

request may vary, we can employ the law of large numbers and use a mean ser-

vice time for all requests, which can be justified in the case of high performance

servers where the number of requests is large and each individual request has

relatively short service time [20]. That is, we assume that requests have the

same size and need C cycles to be processed. For the case of large variations

in request size, checkpointing techniques may be employed to break requests

into smaller sections of the same size [16]. However, exploring checkpoints is

beyond the scope of this paper and we leave it as future work.

Given that we are considering variable frequency processors, the number of

cycles needed to process a request may also depend on the processing frequency

[19]. However, with a reasonable size cache, C has been shown to have small

variations with different frequencies [16]. For simplicity, we assume that C is

a constant and is the mean number of cycles needed to process a request at

the maximum frequency fmax. Notice that, this is a conservative model. With

fixed access time for memory and other I/O devices, the number of CPU cycles

needed to process a request will actually decrease with reduced frequencies.

For simplicity, the time needed to process one request at fmax is assumed to

8

be c = C
fmax

= 1 time unit. Moreover, to ensure responsiveness, we consider

time intervals with length of D time units. All requests arriving in one interval

should be processed during the next interval. That is, the response time for

each request is no more than 2D.

2.3 Fault Model

During the processing of a request, a fault may occur due to various reasons,

such as hardware failures, electromagenatic interferences or software errors.

Since transient faults occur much more frequently than permanent faults [3,12],

in this paper, we focus on transient faults and explore redundancy techniques

to tolerate them. The requests are duplicated on multiple servers (which form

a redundant server group; e.g., Duplex or TMR) and result comparison is used

to detect faults. If no majority result is obtained (e.g., more than one fault

in a TMR; here we assume that faults on different servers produce different

results), we say a request is faulty and it needs to be re-executed.

2.4 Notations

Dslack

p

b: backup time unitsn: primary time units

Fig. 1. To achieve a k-fault tolerant system, p Duplexes are used to process w

requests within a time interval of D. Here, b time units are reserved as backup slots.

For a system that consists of M identical servers, due to energy consideration,

suppose that p (2p ≤ M) Duplex groups are used to implement a k-fault

tolerant system, which is defined as a system that can tolerate k faults within

9

any interval D under all circumstances. Let w be the number of requests

arriving within an interval D. Recall that the processing of one request needs

one time unit. Hence, n = dw
p
e time units are needed to process all the requests.

The schedule for processing all requests within the interval of D is shown in

Figure 1. In the figure, each white rectangle represents a section that is used

to process one request on a Duplex and the shadowed rectangles represent the

recovery sections reserved for re-processing the faulty requests. To tolerate k

faults in the worst case, a number of time units, b, have to be reserved as

backup slots, where each backup slot has p parallel recovery sections. For ease

of presentation, the first n time units are referred to as primary time units

and all white rectangles are referred as primary execution. After scheduling

the primary time units and backup slots, the amount of slack left is D−(n+b),

which can be used to scale down the processing frequency of servers and save

energy. When a faulty request is being re-executed during a recovery section,

another fault may happen. If all the recovery sections that process a given

faulty request fail, then we say that there is a recovery failure, which could be

further recovered using the remaining recovery sections.

2.5 Problem Definition

For a given request arrival rate and a fixed time interval in an event-driven

system that consists of M servers, where the performance and energy con-

sumption of the servers are manageable, we focus on exploring the optimal

redundant configurations of the servers (that is, the redundancy level of server

groups, the number of server groups needed, the number of time units to

reserve for recovery, etc) to either (a) minimize energy consumption while

achieving a k-fault tolerant system or (b) maximize the number of faults that

can be tolerated with a limited energy budget.

10

3 Recovery with Parallel Backup Slots

In this section, we first present recovery schemes that work with parallel

backup slots. For ease of discussion, we assume that servers are configured

as duplexes. That is, the consequence of any single fault is the need of a re-

covery section to re-process the request. The case of servers being configured

with higher levels of modular redundancy (e.g., TMR) will be addressed in

Section 4.

We calculate the worst case maximum number of faults that can be tolerated

during the processing of w requests by p duplexes with b backup slots. The

addition of one more fault could cause an additional faulty request that can

not be recovered and thus leads to a system failure. As a first step, we assume

that the number of requests w is a multiple of p (i.e., w = n · p, n ≥ 1).

The case of w being not a multiple of p will be discussed in Section 3.4. For

different strategies of using backup slots, we consider three recovery schemes:

restricted serial recovery, parallel recovery and adaptive parallel recovery.

T9

T3

R
T6T5

T8T7

T4

T1 2T R 3

8

R
T

T
R
T9R

T1 T2 T3
T6
R

T5
T8T7

T4

8

9

3

3

9

3

R

T9

T1 T T
T6
R

T5
T8T7

T4 R 3

3

8

32

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Fig. 2. Different recovery schemes. × represents faulty requests, and shaded rectan-

gles are the recovery sections.

Figures 2 and 3 will be used below to illustrate the difference between the

recovery schemes. In Figure 2, nine requests are processed on three duplexes.

The requests are labeled T1 to T9 and there are two backup slots (i.e., six

recovery sections). Suppose that requests T3 and T8 become faulty on the

top duplex during the third time unit and the bottom duplex during the

second time unit, respectively. Note that request T8 is recovered immediately

during the third time unit (R8) and the processing of request T9 is postponed.

11

Therefore, at the end of the third time unit, there are two requests to be

processed/re-processed: the original request T9 and the recovery request R3.

3.1 Restricted Serial Recovery

The restricted serial recovery scheme limits the re-processing of a faulty re-

quest to the same duplex. For example, Figure 2a shows that, R3, the recovery

of T3, is performed on the top duplex while T8 is recovered by R8 on the bottom

duplex.

R RR

T9

T1
T4
T7 T8

T5

T2 T3
T6

 33 R 9

9T
T
R
T9R

T1 T2 T
T
RT8

T5T4
T7

3

6

8

3

3

3

R R
R
R

R
T9

T1
T4
T7 T8

T5

T2 T3
T6
R

93

3 9

98

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Fig. 3. The maximum number of faults that can be tolerated by different recovery

schemes in the worst case scenario.

It is easy to see that, with b backup slots, the restricted serial recovery scheme

can only recover from b faults (during either primary or backup execution) in

the worst case scenario. For example, as shown in Figure 3a, if there is a fault

that causes request T3 to be faulty during primary execution, we can only

tolerate one more fault in the worst case when the fault causes T3’s recovery,

R3, to be faulty. One additional fault could cause the second recovery RR3 to

be faulty and lead to a system failure since there is no additional backup slot

and the recovery of the faulty requests is restricted to the same duplex.

3.2 Parallel Recovery

If faulty requests can be re-processed on multiple duplexes in parallel, we can

allocate multiple recovery sections of the same backup slot to recover one faulty

request concurrently. After finishing processing requests during the primary

12

time units, the parallel recovery scheme considers all recovery sections within

the backup slots and equally allocates them to the remaining requests to be

recovered/executed. For the above example, there are six recovery sections in

total and each of the remaining requests R3 and T9 gets three recovery sections.

The schedule is shown in Figure 2b. As mentioned early, the recovery of a faulty

request (e.g., T8) during the primary time units is performed immediately after

the faulty request and only on the same duplex.

Suppose that there are i faults during primary execution and i requests remain

to be processed at the beginning of the backup slots. With b·p recovery sections

in total, each remaining request will get at least b b·p
i
c recovery sections. That

is, at most b b·p
i
c − 1 additional faults can be tolerated. Therefore, when there

are i faults during primary execution, the number of additional faults during

the backup execution that can be tolerated by parallel recovery is:

PR(b, p, i) =

⌊
b · p
i

⌋
− 1 (3)

Notice that, w (= n · p) is the maximum number of faults that could occur

during the n primary time units. That is, i ≤ n · p. Furthermore, we have

i ≤ b · p because it is not feasible for b · p recovery sections to recover more

than b · p faulty requests. Therefore, i ≤ min{n · p, b · p}. Let PRb,p represent

the maximum number of faults that can be tolerated by p duplexes with b

backup slots in the worst case scenario. Hence:

PRb,p = min
1≤i≤min{b·p,n·p}

{i + PR(b, p, i)} (4)

Differentiating Equation 4 and considering the feasible range of i, simple al-

gebraic manipulations show that the value of PRb,p can be obtained when

i = min
{⌊√

b · p
⌋
, n · p

}
and/or i = min

{⌊√
b · p

⌋
+ 1, n · p

}
depending on the

floor operation in Equation 3. For the example in Figure 2, we have PR2,3 = 4

when i = 2 (illustrated in Figure 3b) or i = 3. That is, for the case shown

13

in Figure 3b, two more faults can be tolerated in the worst case scenario and

we can achieve a 4-fault tolerant system. One additional fault could cause the

third recovery section for R3 to be faulty and lead to a system failure. Notice

that, although T9 is processed successfully during the first backup slot, the

other two recovery sections in the second backup slot that are allocated to T9

can not be used by R3 due to the fixed recovery schedule.

3.3 Adaptive Parallel Recovery

Instead of considering all recovery sections together and fixing the recovery

schedule, we can use one backup slot at a time and adaptively allocate the

recovery sections to improve the performance and tolerate more faults. For

example, as shown in Figure 2c, we first use the three recovery sections in the

first backup slot to process the remaining two requests. Here, the recovery R3

is processed on two duplexes and request T9 on one duplex. If the duplex that

processes T9 happens to encounter a fault while R3 completes successfully, the

recovery R9 can be processed using all recovery sections in the second backup

slot on all three duplexes, thus allowing two additional faults as shown in

Figure 3c. Therefore, a 5-fault tolerant system is achieved. Compared to the

simple parallel recovery scheme, one more fault could be tolerated.

In general, since there are p recovery sections within one backup slot, we can

use one backup slot to process/recover up to p requests. Suppose that there are

i requests remaining to be processed/recovered before using the backup slots.

If i > p, the first p requests will be processed/recovered during the first backup

slot, one on each deplex, and the rest requests and any new faulty requests

during the first backup slot will be processed/recovered on the following b− 1

backup slots. If i ≤ p, requests are processed redundantly using a round-robin

scheduler. In other words, for the first p − i
⌊

p
i

⌋
requests, each of them is

14

processed on
⌊

p
i

⌋
+ 1 duplexes redundantly; for other requests, each of them

is processed on
⌊

p
i

⌋
duplexes concurrently.

Assuming that z requests need to be processed after the first backup slot, then

the same recovery algorithm that is used in the first backup slot to process

i requests is used in the second backup slot to process z requests; and the

process is repeated for all b backup slots.

With the adaptive parallel recovery scheme, let APRb,p be the worst case

maximum number of faults that can be tolerated using b backup slots on p

duplexes. APRb,p can be calculated by considering different number of faults,

i, occurred in the primary execution and estimating the corresponding number

of additional faults allowed in the worst case in backup slots, APR(b, p, i), and

then taking the minimum over all values of i. Recall that i ≤ min{n · p, b · p}.
We have:

APRb,p = min
1≤i≤min{b·p,n·p}

{i + APR(b, p, i)} (5)

where i is the number of faults during the primary execution; APR(b, p, i)

is the maximum number of additional faults that can be tolerated during b

backup slots given the worst case distribution of the faults, which can be found

iteratively as shown below:

APR(1, p, i) =
⌊
p

i

⌋
− 1 (6)

APR(b, p, i) = min
x(i)≤J≤y(i)

{J + APR(b− 1, p, z(i, J))} (7)

When b = 1, Equation 6 says that the maximum number of additional faults

that can be tolerated in the worst case is
⌊

p
i

⌋
− 1. That is, one more fault

could cause a recovery failure that leads to a system failure since at least one

request is processed on
⌊

p
i

⌋
duplexes.

For the case of b > 1, in Equation 7, J is the number of faults occurred during

15

the first backup slot and z(i, J) is the number of requests that still need to

be processed during the remaining b − 1 backup slots. We search all possible

values of J and the minimum value of J + APR(b− 1, p, z(i, J)) is the worst

case maximum number of additional faults that can be tolerated during b

backup slots. The bounds on J , x(i) and y(i), depend on i, the number of

requests that need to be processed during b backup slots. When deriving the

x(i) and y(i) bounds, we consider two cases, namely i > p and i ≤ p.

When i > p, we have enough requests to be processed and the recovery sections

in the first backup slot are used to process p requests (each on one duplex).

When J (0 ≤ J ≤ p) faults happen during the first backup slot, the total

number of requests that remain to be processed during the remaining b − 1

backup slots is z(i, J) = i−p+J . Since we should have z(i, J) ≤ (b−1)p, then

J should not be larger than b · p − i. That is, when i > p, we have x(i) = 0,

y(i) = min{p, b · p− i} and z(i, J) = i− p + J .

When i ≤ p, all requests are processed during the first backup slot and each of

the requests is processed on at least
⌊

p
i

⌋
duplexes. To get the maximum number

of faults that can be tolerated, at least one recovery failure is needed during

the first backup slot such that the remaining b−1 backup slots can be utilized.

Thus, the lower bound for J , the number of faults during the first backup slot,

is x(i) =
⌊

p
i

⌋
. Therefore,

⌊
p
i

⌋
= x(i) ≤ J ≤ y(i) = p. When there are J faults

during the first backup slot, the maximum number of recovery failures in the

worst case is z(i, J), which is also the number of requests that need to be

processed during the remaining b− 1 backup slots. From the adaptive parallel

recovery scheme and considering the integer property of the number of fauts

to be recovered, we can get:

z(i, J) =





⌊
J

bp/ic
⌋

if
⌊p

i

⌋ ≤ J ≤ (i− p + ibp
i c)bp

i c;

(i− p + ibp
i c) +

⌊
J−(i−p+ib p

i
c)b p

i
c

bp/ic+1

⌋
if (i− p + ibp

i c)bp
i c < J ≤ p.

(8)

16

For the example in Figure 2c, applying the above equations, we can get

APR(2, 3, 1) = 5. That is, if there is only one fault during the primary execu-

tion, it can tolerate up to 5 faults since all 6 recovery sections will be redun-

dant. Similarly, APR(2, 3, 2) = 3 (illustrated in Figure 3c), APR(2, 3, 3) = 2,

APR(2, 3, 4) = 1, APR(2, 3, 5) = 0 and APR(2, 3, 6) = 0. Thus, from Equa-

tion 5, APR2,3 = min6
i=1{i + APR(2, 3, i)} = 5.

3.4 Arbitrary Number of Requests

We have discussed the case where the number of requests, w, in an interval is

a multiple of p, the number of duplexes employed. In this section we extend

the results to the case where w is not a multiple of p.

Without loss of generality, suppose that w = n · p + d, where n ≥ 0 and

0 < d < p. Thus, processing all requests will need (n + 1) primary time units.

However, the last primary time unit is not fully scheduled with requests. If we

consider the last primary time unit as a backup slot, there will be b+1 backup

slots and at least d requests need to be processed after finishing the execution

in the first n time units. That is, we pretend to have b + 1 backup slots and

treat the last d requests that are not scheduled within the primary time units

as faulty requests. Therefore, the minimum number of faulty requests to be

processed is d and the maximum number of faulty requests is min{w, (b+1)·p}.
Thus, similar to Equations 3 and 5, the worst case maximum number of faults

that can be tolerated with b backup slots can be obtained as:

PRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + PR(b + 1, p, i)} (9)

APRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + APR(b + 1, p, i)} (10)

where i is the number of requests to be processed on b + 1 backup slots.

PR(b + 1, p, i) and APR(b + 1, p, i) are defined as in Equations 3 and 6-7,

17

respectively.

3.5 Worst Case Maximum Number of Tolerated Faults

To illustrate the performance of different recovery schemes, we calculate the

worst case maximum number of faults that can be recovered by p duplexes with

b backup slots under different recovery schemes. Assuming that the number of

requests w is a multiple of p and is more than the number of available recovery

sections, Table 1 gives the worst case maximum number of faults that can be

tolerated by a given number of duplexes with different numbers of backup slots

under the parallel and adaptive parallel recovery schemes. Recall that, for the

restricted serial recovery scheme, the number of faults that can be tolerated

in the worst case is the number of available backup slots b and is independent

of the number of duplexes that work in parallel (not shown in the table).

Table 1

The worst case maximum number of faults that can be tolerated by p duplexes with

b backup slots.
b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

p = 4 parallel 3 4 6 7 8 8 9 10 11 11 12 12 13 14 14

adaptive 3 6 10 14 18 22 26 30 34 38 42 46 50 54 58

p = 8 parallel 4 7 8 10 11 12 14 15 16 16 17 18 19 20 20

adaptive 4 10 17 24 31 39 47 55 63 71 79 87 95 103 111

Intuitively, for given p and b, the parallel recovery scheme should be able to

recover from more faults than the restricted serial recovery scheme in the

worst case scenario. However, from the table, we can identify that the number

of faults that can be tolerated by the parallel recovery scheme may be less than

what can be tolerated by the restricted serial recovery scheme. For example,

with p = 4, the restricted serial recovery scheme can tolerated 15 faults when

b = 15. However, the parallel recovery can only tolerate 14 faults. The reason

comes from the unwise decision of fixing allocation of all recovery slots under

18

the parallel recovery scheme, especially for larger number of backup slots.

When the number of backup slots equals 1, the two parallel recovery schemes

have the same behavior and can tolerate the same number of faults. From the

table, we can also see that the adaptive parallel recovery scheme is much more

efficient than the restricted serial recovery and the simple parallel recovery

schemes; this advantage is more pronounced for the case of more duplexes

working in parallel and larger numbers of backup slots. Interestingly, for the

adaptive parallel recovery scheme, the number of faults that can be tolerated

by p duplexes increases linearly with the number of backup slots b when b

is greater than a certain value that depends on p. For example, with p = 8,

if b > 5, the number of faults that can be tolerated using adaptive parallel

recovery scheme increases by 8 when b is incremented. However, for p = 4,

when b > 2, the number of faults increases by 4 when b is incremented.

4 Modular Redundancy and Parallel Recovery

Although we introduced recovery schemes with Duplex, the servers can be

configured with any level of modular redundancy (e.g., NMR, 2 ≤ N ≤ M),

which may consume different amounts of energy and tolerated different num-

bers of faults within the interval considered. In this section, we show how

recovery schemes work in general with NMR.

For a general a-out-of-N NMR model, at least a servers in a NMR group need

to get correct results to avoid a NMR group failure. If there is a NMR group

failure, a request becomes faulty and needs to be re-executed by further explor-

ing temporal redundancy. For servers configured with NMR, each rectangle in

Figures 1, 2 and 3 corresponds to the processing of a request on a NMR group

and the results about the worst case maximum number of faults that can be

tolerated in Section 3 will correspond to the number of NMR group failures.

19

Notice that, when higher levels of modular redundancy are used to detect and

tolerate faults, the number of faults to be tolerated may not be the same as

the number of faulty requests. For the a-out-of-N NMR model, the processing

of one request succeeds if no less than a servers get correct results. That is, in

the worst case, N − a + 1 faults cause a NMR group failure and thus lead to

a faulty request. Therefore, to obtain a k-fault tolerant system, we only need

to recover qk =
⌊

k
N−a+1

⌋
faulty requests. Inversely, if q is the number of faulty

requests that can be recovered, the number of faults that can be tolerated

will be at least kq = q · (N − a + 1) + N − a. For example, if each rectangle

in Figure 3c represents the execution of a task on a TMR and the 2-out-of-3

TMR model is used, the maximum number of faults that can be tolerated in

the worst case will be APR(2, 3)·(N−a+1)+N−a = 5(3−2+1)+3−2 = 11.

5 Optimal Redundant Configurations

In what follows, we consider two optimal redundant configuration problems:

(a) minimizing system energy consumption for a given reliability goal; and

(b) maximizing system reliability for a given energy budget. In this context,

an optimal redundant configuration specifies the level of modular redundancy

employed, the number of servers used (the unused servers are turned off for en-

ergy efficiency), the frequency at which the active servers run and the number

of backup slots needed.

5.1 Minimize Energy with Fixed Reliability Goal

For a system consisting of M servers, to tolerate k faults during the processing

of all requests within the interval considered, we may use different redundant

configurations which in turn consume different amounts of energy. When the

20

system is configured with NMR, there are at most bM
N
c NMR groups available.

Due to energy considerations [5,26], it may be more energy efficient to use fewer

NMR groups than what is available and turn the unused servers off.

In Sections 3 and 4, we have shown how to compute the maximum number of

faults, k, that can be tolerated by p NMR groups (pN ≤ M) with b backup

slots in the worst case. In this section, we use the same type of analysis for the

inverse problem. That is, finding the least number of backup slots, b, needed

by p NMR groups to tolerate k faults, which will maximize the amount of re-

maining slack for power management and thus minimize energy consumption.

For a given recovery scheme, let b be the minimum number of backup slots

needed by p NMR groups to guarantee that any k faults can be tolerated. If

b is more than the available slack units (i.e., b > D −
⌈

w
p

⌉
), it is not feasible

for p NMR groups to tolerate k faults during the processing of all requests

within the interval considered. Suppose that b ≤ D −
⌈

w
p

⌉
, the amount of

remaining slack time on each server is slack = D−
⌈

w
p

⌉
− b. Expecting that no

faults will occur (i.e., being optimistic), the slack can be used to scale down

the primary execution of requests while the recoveries are executed at the

maximum frequency fmax if needed. Alternatively, expecting that ke (≤ k)

faults will occur (i.e., ke-pessimism 2) and assuming that be (≤ b) is the least

number of backup slots needed to tolerate ke faults, the slack time is used to

slow down both primary and recovery executions during the first be backup

slots. The recovery execution during the remaining backup slots is executed

at the maximum frequency, fmax, if more than ke faults occur. Thus, the ke-

pessimism expected energy consumption is:

E(ke) = p ·
[
PsD + (Pind + Ceff

m(ke))
dw/pe+ be

f(ke)

]
(11)

2 Here, optimistic approach corresponds to ke = 0 and pessimistic approach corre-

sponds to ke = k.

21

where

f(ke) = min

{ dw/pe+ be

D − (b− be)
, fee

}
(12)

is the frequency to process all original requests and the recovery requests dur-

ing the first be backup slots. Recall that fee is the minimum energy efficient

frequency (see Section 2). Algorithm 1 summarizes the procedure to get the

optimal redundant configuration to minimize the expected energy consump-

tion while tolerating k faults within the interval D.

Algorithm 1 The optimal redundant configuration for energy minimization
1: INPUT: w, D, M,α, β, m, k, ke

2: Emin = M(α + β + 1)Pmax
d D;

3: Nopt = −1; popt = −1; bopt = −1;

4: for (N from 2 to M) do

5: for (p from
⌊

M
N

⌋
to 1) do

6: b = 0; be = 0;

7: while (Recovery(scheme,N, p, b) < k) do

8: b = b + 1; /*see Equations 13, 14 and 15*/

9: end while

10: if (b ≤ D −
⌈

w
p

⌉
) then

11: while (Recovery(scheme,N, p, be) < ke) do

12: be = be + 1;

13: end while

14: Calculate E(ke) from Equation 11;

15: if (E(ke) < Emin) then

16: Emin = E(ke); Nopt = N ; popt = p; bopt = b;

17: end if

18: end if

19: end for

20: end for

21: return (Nopt, popt,bopt).

22

First, the function Recovery(scheme,N, p, b) (where scheme can be restricted

serial recovery, parallel recovery and adaptive parallel recovery, respec-

tively) is defined as follows to find the number of faults that can be toler-

ated by p NMR groups with b backup slots with the assumption of a general

a-out-of-N NMR model:

Recovery(serial, N, p, b) = (N − a + 1) · b + (N − a) (13)

Recovery(parallel, N, p, b) = (N − a + 1) · PRb,p + (N − a) (14)

Recovery(adaptive, N, p, b) = (N − a + 1) · APRb,p + (N − a) (15)

By invoking the function Recovery(·), the algorithm finds the least number of

backup slots b for p NMR groups to tolerate k faults using a given recovery

scheme (lines 7 and 8). If b is larger than the available slack D−dw
p
e (line 10), p

NMR groups are not feasible. Otherwise (from line 11 to 17), the least number

of backup slots be for p NMR groups to tolerate ke faults is obtained (line

11) and the expected energy consumption is computed (line 14). Searching

through all feasible numbers of NMR groups (line 5) and all possible values

of N (line 4), we get the optimal redundant configuration to minimize the

expected energy consumption (line 21). Notice that, finding the least number

of backup slots to tolerate k faults has a complexity of O(k) (lines 7 and 11).

Thus, the complexity of this algorithm is O(M2k).

5.2 Maximize Reliability with Fixed Energy Budget

For the interval considered, when the energy budget is limited, we may not be

able to power up all M servers at the maximum frequency during the whole

interval. The more servers are employed, the lower the frequency at which

the servers can run. For a given number of servers that run at a certain fre-

quency, different levels of modular redundancy will result in different numbers

of modular redundant groups and further lead to different maximum number

23

of faults that can be tolerated within the interval D. In this section, we come

up with the optimal redundant configuration that maximizes the number of

faults that can be tolerated with a fixed energy budget.

Notice that, from the power model discussed in Section 2, the most energy

efficient solution is to scale down all the employed servers uniformly within the

interval considered. With the length of the interval being D and with limited

energy budget, Ebudget, the average power level that a system can consume is:

Pbudget =
Ebudget

D
(16)

When p NMR groups (p ·N ≤ M) are deployed, the minimum power level is

consumed when every server runs at the minimum energy efficient frequency

fee. Thus, the minimum power level for p NMR groups is:

Pmin(p,N) = p ·N(Ps + Pind + Ceff
m
ee) = p ·N(α + β +

fm
ee

fm
max

)Pmax
d (17)

If Pmin(p,N) > Pbudget, p NMR groups are not feasible in terms of power

consumption. Suppose that Pmin(p,N) ≤ Pbudget, which means that the servers

may run at a higher frequency than fee. Assuming that the frequency of the

active servers that leads to Pbudget is fbudget(p,N), we have:

fbudget(p,N) = m

√
Pbudget

p ·N · Pmax
d

− α− β · fmax (18)

If there are no faults, the total time needed for processing all requests at

frequency fbudget(p,N) is:

tprimary =
dw/pe

fbudget(p,N)
(19)

If tprimary > D, p NMR groups cannot finish processing all requests within the

24

interval considered under the energy budget. Suppose that tprimary ≤ D. We

have D− tprimary units of slack time and the number of backup slots that can

be scheduled at frequency fbudget(p,N) is:

bbudget(p,N) = (D − tprimary)fbudget(p,N) = D · fbudget(p,N)−
⌈
w

p

⌉
(20)

Notice that (see Sections 3 and 4), the worst case maximum number of NMR

group failures that can be recovered by p NMR groups using the restricted

serial recovery scheme is bbudget(p,N). From Equations 9 and 10, the maxi-

mum number of NMR group failures that can be recovered within the inter-

val considered is either PRp,bbudget(p,N) (for the parallel recovery scheme) or

APRp,bbudget(p,N) (for the adaptive parallel recovery scheme). The correspond-

ing maximum number of faults that can be tolerated in the worst case is:

kserial(p,N) = bbudget(p,N)(N − a + 1) + (N − a) (21)

kparallel(p,N) = PR(p, bbudget(p,N))(N − a + 1) + (N − a) (22)

kadaptive(p,N) = APR(p, bbudget(p,N))(N − a + 1) + (N − a) (23)

where a a-out-of-N NMR model is assumed.

For a given recovery scheme, by searching all feasible combinations of p and N

(pN ≤ M), we can find the optimal redundant configuration that maximizes

the worst case maximum number of faults to be tolerated within the interval

D. The algorithm is similar to Algorithm 1 and is omitted for brevity.

6 Analytical Results and Discussion

In what follows, we provide some analysis results to show that the optimal

redundant configuration that minimizes expected energy consumption for dif-

ferent number of faults to be tolerated or maximizes system reliability with

25

different energy budgets may deploy different levels of modular redundancy.

Assuming that any two faults are not the same, the 2-out-of-N NMR model

is used.

Notice that, the power characteristics of servers also affect the optimal con-

figurations. As shown by Elnozahy et al. in [6], lower static and leakage power

prefers TMR instead of Duplex. That is, the energy consumed by the addi-

tional servers in TMR may be less than that consumed during the recovery

time needed by Duplex for the same number of faults to be tolerated. For differ-

ent values of α and β (which represent sleep power and frequency independent

power, respectively), we have obtained the similar results. In what follows, we

assume that m = 3, fmax = 1 and the maximum frequency-dependent power

is Pmax
d = Ceff

m
max = 1. The values of α and β are assumed to be 0.1 and 0.3

respectively [31].

In our analysis, we vary the size of requests, request arrival rate (i.e., system

load), the number of faults to be tolerated (k) and the recovery schemes to see

how they affect the optimal redundant configuration. The interval considered

is 1 second (i.e., worst case response time is 2 seconds) and three different

request sizes are considered: 1ms, 10ms and 50ms at fmax.

For illustration purposes, we consider a system that consists of 12 servers.

Faults are detected through duplicated processing. Thus the least level of

modular redundancy is Duplex and there are at most 6 duplex groups. Let

the system load be the ratio of the total number of requests arrived in one

interval over the number of requests that can be handled by one server within

one interval. With 6 duplex groups, the maximum system load that can be

handled is 6. To get enough slack for illustrating the variation of the optimal

redundant configurations, unless specified otherwise, a system load of 2.6 is

used. Recall that the interval considered is 1 second, different request arrival

rates are used for different request sizes to obtain the system load of 2.6.

26

6.1 Optimal Configuration for Energy Minimization

Table 2 shows the level of modular redundancy employed (N) and the number

of NMR groups used (p) for the optimal redundant configuration that tolerates

a given number of faults k using different recovery schemes (the remaining

M − pN severs are turned off for energy efficiency).

Table 2

The optimal redundant configuration for different request sizes using different re-

covery schemes. Here, ke = k
2 .

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

size,number N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p

1ms,2600 2, 4 2, 4 2, 4 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

serial 10ms,260 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

50ms,52 2, 4 2, 4 2,4 2, 6 2, 6 2, 6 2, 6 2, 6 2, 6 2, 6 3, 4 3, 4 3, 4 3, 4

1ms,2600 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

parallel 10ms,260 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

50ms,52 2, 4 2, 5 2, 5 2, 5 2, 5 2, 6 2, 6 2, 5 2, 5 2, 5 2, 5 2, 5 2, 6 3, 4

1ms,2600 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 5 2, 5 2, 5 2, 5

adaptive 10ms,260 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

50ms,52 2, 4 2, 5 2, 5 2, 5 2, 5 2, 4 2, 4 2, 5 2, 5 2, 5 2, 6 2, 5 2, 5 2, 6

From the table, we can see that Duplex is the most energy efficient config-

uration in most cases. Moreover, smaller requests and the adaptive parallel

recovery favor lower levels of modular redundancy while larger requests and

the restricted serial recovery favor higher levels of modular redundancy, espe-

cially for larger number of faults to be tolerated (more than 11 in the table).

Due to the effects of sleep power, the number of duplex groups needed does

not increase monotonically when the number of faults increases, especially for

the case of large request size where more slack time is needed as temporal

redundancy for the same number of backup slots

Figure 4 shows the corresponding expected energy consumption. Recall that

the normalized power is used. For each server, the maximum frequency-dependent

power is Pmax
d = 1, sleep power is Ps = 0.1 and frequency-independent power

27

is Pind = 0.3. The two numbers in the legends stand for request size and

request arrival rate (in terms of number of requests per second), respectively.

 5

 6

 7

 8

 9

 10

 11

 12

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

a. Restricted serial recovery b. Parallel recovery

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

c. Adaptive parallel recovery

Fig. 4. The expected energy consumption for different recovery schemes.

From the figure, we can see that, when the request size is 1ms, the expected

energy consumption is almost the same for different numbers of faults to be

tolerated. The reason is that, to tolerate up to 15 faults, the amount of slack

time used by the backup slots is almost negligible and the amount of slack time

used for energy management is more or less the same when each backup slot

is only 1ms. However, when the request size is 50ms, the size of each backup

slot is also 50ms and the minimum expected energy consumption increases

significantly when the number of faults to be tolerated increases, because less

slack is left for energy management.

Note that, to tolerate different numbers of faults, it may require the same

number of backup slots, especially when higher levels of modular redundancy

and parallel recovery schemes are deployed, which in turn leads to the same

28

expected energy consumption as shown in the plateaus in Figure 4. Further-

more, to tolerate the same number of faults, the adaptive parallel recovery

scheme is the most energy efficient for a give request size and corresponding

request arrival rate (note the different scales of Y-axis in the figures).

For different system loads, Figure 5 further shows the expected energy con-

sumption to tolerate given number of faults (e.g., 4, 8 or 16) under the adaptive

parallel recovery scheme. For a given request size, different request arrival rates

are used to obtain different system loads.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

system load

k=16
k=8
k=4

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

system load

k=16
k=8
k=4

a. 10ms b. 50ms

Fig. 5. The expected energy consumption under different system loads to tolerate

given numbers of faults for the adaptive parallel recovery scheme (ke = k
2).

From the figure, we can see that, for given request size, as the system load

increases, more requests need to be processed within the interval considered

and the expected energy consumption to tolerate a given number of faults

increases. As before, for a given number of faults, the difference in the expected

energy consumption increases for larger requests due to larger backup slots

and less slack for energy management. Also as before, the expected energy

consumption for small request sizes (1ms or 10ms) is almost the same to

tolerate 4, 8 or 16 faults within the interval considered.

To see the effects of different levels of pessimism, Table 3 shows the optimal re-

dundant configuration that minimizes the expected energy consumption when

tolerating given numbers of faults. For adaptive parallel recovery, Duplex is al-

29

Table 3

The effects of pessimism levels on optimal redundant configuration to tolerate a

given number of faults. The request size used is 50ms and the request arrival rate

is 52 requests/second.
k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

recovery ke N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p

0 2, 2 2, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

restricted serial k/2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2, 5 3, 3 3, 3 3, 3 3, 3 3, 3

k 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 3, 2 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 4, 3

0 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

parallel k/2 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 4 2, 3 2, 4 2, 5 2, 5 2, 5 2, 5 3, 4

k 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 4 2, 5 3, 3 3, 3 3, 3 3, 3 3, 3 4, 3

ways the best and is not shown in the table From the table, we can see that the

optimistic approach (k = 0) favors lower levels of modular redundancy and the

pessimistic approach favors higher levels of modular redundancy. This comes

from the fact that higher levels of modular redundancy needs less backup slots

for tolerating a given number of faults, which results in more slack for scal-

ing down all the processing and less energy when the pessimistic approach is

used. For the optimistic approach, only the processing during primary time

slots counts in the expected energy consumption, which favors lower levels of

modular redundancy that may have more backup slots.

6.2 Optimal Number of Servers for Reliability Maximization

Assume that the maximum power, Pmax, corresponds to running all servers

with the maximum processing frequency fmax. When the energy budget for

each interval is limited, we can only consume a fraction of Pmax when pro-

cessing requests during any given interval. For different energy budgets (i.e.,

different fraction of Pmax), Figure 6 shows the worst case maximum number

of faults that can be tolerated when the optimal redundant configuration is

employed. Again, different arrival rates are considered for different request

30

sizes to get a fixed system load of 2.6.

 0

 50

 100

 150

 200

 250

 300

 350

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
or

st
 c

as
e

m
ax

im
um

 fa
ul

ts

Energy budget

Adaptive
Overall

Restricted

 0

 10

 20

 30

 40

 50

 60

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
or

st
 c

as
e

m
ax

im
um

 fa
ul

ts

Energy budget

Adaptive
Overall

Restricted

a. 10ms and 260 requests/second b. 50ms and 52 requests/second

Fig. 6. The worst case maximum number of faults that can be tolerated for different

request sizes when the energy budget is limited.

From the figure, we can see that the number of faults that can be tolerated

increases with increased energy budget. When the request size increases, there

are less available backup slots due to the large slot size and fewer faults can be

tolerated. When the number of backup slots is very large (e.g., for the case of

10ms with 260 requests/second), the same as shown in Section 3.5, the parallel

recovery performs worse than the restricted serial recovery (due to fixed allo-

cation of all recovery sections). The adaptive parallel recovery performs the

best and can tolerate many more faults than the other two recovery schemes

at the expense of more complex management of backup slots. As observed in

the last section, for optimal redundant configurations, parallel recovery, small

requests and optimistic approaches favor lower levels of modular redundancy,

while restricted serial recovery, large requests and pessimistic approaches favor

higher levels of modular redundancy.

7 Conclusions

In this work, we consider an event-driven application that is served by a system

that consists of a fixed number of servers. To efficiently use slack time as

temporal redundancy for providing reliable service, we propose an adaptive

31

parallel recovery scheme that appropriately recovers requests from faults in

parallel. Furthermore, we show that this scheme leads to higher reliability

than serial or non-adaptive parallel recovery schemes.

Combining modular redundancy with parallel recovery, we propose schemes

to determine the optimal redundant configuration to minimize energy con-

sumption for a given reliability goal or to maximize system reliability for a

given energy budget. In this context, a redundant configuration is specified by

the level of modular redundancy employed, the number of servers used (the

remaining servers are turned off for energy efficiency), the number of backup

slots needed and the processing frequency of the working servers.

Our analysis shows that the restricted serial recovery scheme, which does not

consider parallelism of available slack time, favors higher levels of modular

redundancy. The adaptive parallel recovery favors lower levels of modular re-

dundancy since there are more available NMR groups. In most cases, Duplex

is the best. In general, larger requests and pessimistic approach favors higher

level of modular redundancy while smaller requests and optimistic approach

favors lower level of modular redundancy.

References

[1] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and

R. Rajamony. The case for power management in web servers, chapter 1. Power

Aware Computing. Plenum/Kluwer Publishers, 2002.

[2] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design.

In Proc. of The HICSS Conference, Jan. 1995.

[3] X. Castillo, S. McConnel, and D. Siewiorek. Derivation and calibration of a

transient error reliability model. IEEE Trans. on computers, 31(7):658–671,

1982.

32

[4] Intel Corp. Mobile pentium iii processor-m datasheet. Order Number: 298340-

002, Oct 2001.

[5] E. (Mootaz) Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server

clusters. In Proc. of Power Aware Computing Systems, 2002.

[6] E. (Mootaz) Elnozahy, R. Melhem, and D. Mossé. Energy-efficient duplex and

tmr real-time systems. In Proc. of The IEEE Real-Time Systems Symposium,

2002.

[7] X. Fan, C. Ellis, and A. Lebeck. The synergy between power-aware memory

systems and processor voltage. In Proc. of the Workshop on Power-Aware

Computing Systems, 2003.

[8] http://developer.intel.com/design/intelxscale/.

[9] http://www.transmeta.com.

[10] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proc. of

The 14th Symposium on Discrete Algorithms, 2003.

[11] T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable

voltage processors. In Proc. of The 1998 International Symposium on Low

Power Electronics and Design, Aug. 1998.

[12] R.K. Iyer, D. J. Rossetti, and M.C. Hsueh. Measurement and modeling of

computer reliability as affected by system activity. ACM Trans. on Computer

Systems, 4(3):214–237, Aug. 1986.

[13] R. Jejurikar, C. Pereira, and R. Gupta. Leakage aware dynamic voltage scaling

for real-time embedded systems. In Proc. of the 41st annual Design automation

conference (DAC), 2004.

[14] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation.

In Proc. of the 9th International Conference on Architectural Support for

Programming Languages and Operating Systems, Nov. 2000.

33

[15] C. Lefurgy, K. Rajamani, Freeman Rawson, W. Felter, M. Kistler, and

T. W. Keller. Energy management for commercial servers. IEEE Computer,

36(12):39–48, 2003.

[16] R. Melhem, D. Mossé, and E. (Mootaz) Elnozahy. The interplay of power

management and fault recovery in real-time systems. IEEE Trans. on

Computers, 53(2):217–231, 2004.

[17] D. K. Pradhan. Fault Tolerance Computing: Theory and Techniques. Prentice

Hall, 1986.

[18] Rambus. Rdram. http://www.rambus.com/, 1999.

[19] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware

static timing analysis. In Proc. of the IEEE Real-Time System Symposium,

2003.

[20] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu. Power-aware

qos management in web servers. In Proc. of the 24th IEEE Real-Time System

Symposium, Dec. 2003.

[21] K. G. Shin and H. Kim. A time redundancy approach to tmr failures using

fault-state likelihoods. IEEE Trans. on Computers, 43(10):1151 – 1162, 1994.

[22] A. Sinha and A. P. Chandrakasan. Jouletrack - a web based tool for software

energy profiling. In Proc. of Design Automation Conference, Jun 2001.

[23] S. Thompson, P. Packan, and M. Bohr. Mos scaling: Transistor challenges for

the 21st century. Intel Technology Journal, Q3, 1998.

[24] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware software-based

fault tolerance in real-time systems. In Proc. of The International Symposium

on Low Power Electronics Design (ISLPED), Aug. 2002.

[25] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu

energy. In Proc. of The First USENIX Symposium on Operating Systems Design

and Implementation, Nov. 1994.

34

[26] R. Xu, D. Zhu, C. Rusu, R. Melhem, and D. Mossé. Energy efficient policies

for embedded clusters. In Proc. of the Conference on Language, Compilers, and

Tools for Embedded Systems (LCTES), Jun. 2005.

[27] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.

In Proc. of The 36th Annual Symposium on Foundations of Computer Science,

1995.

[28] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in

embedded real-time systems. In Proc. of IEEE/ACM Design, Automation and

Test in Europe Conference(DATE), 2003.

[29] Y. Zhang and K. Chakrabarty. Task feasibility analysis and dynamic voltage

scaling in fault-tolerant real-time embedded systems. In Proc. of IEEE/ACM

Design, Automation and Test in Europe Conference(DATE), 2004.

[30] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management

on reliability in real-time embedded systems. In Proc. of the International

Conference on Computer Aidded Design (ICCAD), Nov. 2004.

[31] D. Zhu, R. Melhem, D. Mossé, and E.(Mootaz) Elnozahy. Analysis of an energy

efficient optimistic tmr scheme. In Proc. of the 10th International Conference

on Parallel and Distributed Systems (ICPADS), Jul. 2004.

35

