
GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE ASIMPLE POLYGONATLAS F. COOK IV AND CAROLA WENKAbstra
t. We unveil an alluring alternative to parametri
 sear
h that appliesto both the non-geodesi
 and geodesi
 Fré
het optimization problems in theplane. This randomized approa
h is based on a variant of red-blue interse
tionsand is appealing due to its elegan
e and pra
ti
al e�
ien
y when 
ompared toparametri
 sear
h.The frontiers of knowledge are expanded by our debut of the �rst algo-rithm for the geodesi
 Fré
het de
ision problem between two polygonal 
urves
A and B inside a simple bounding polygon P . The geodesi
 de
ision prob-lem is asymptoti
ally almost as fast as its non-geodesi
 sibling and requires
O(N2 log k) time and O(k + N) spa
e after O(k) prepro
essing, where N isthe larger of the 
omplexities of A and B and k is the 
omplexity of P . The
ulmination of our work is a randomized solution to the geodesi
 Fré
het op-timization problem that runs in O(k + (N2 log kN) log N) expe
ted time and
O(k+N2) spa
e. This run time is within a logarithmi
 fa
tor of being asymp-toti
ally equivalent to the run time of the non-geodesi
 Fré
het optimizationproblem [3℄.The algorithm for the geodesi
 Fré
het de
ision problem rests on a foun-dation of several key properties. We prove that a geodesi
 
ell for polygonal
urves inside a simple polygon P has at most one free region and that thisregion is monotone. This allows rea
hability information to be propagatedthrough a 
ell in 
onstant time on
e its boundaries are known. We also showhow to 
ompute a 
ell's boundaries in O(log k) time after prepro
essing P in
O(k) time and spa
e.Other interesting and related results are that the geodesi
 Hausdor� dis-tan
e between point sets inside a simple polygon P 
an be 
omputed in
O((k + N) log(k + N)) time and O(k + N) spa
e. The approa
h relies on geo-desi
 Voronoi diagrams and geodesi
 distan
e queries inside P . The geodesi
Hausdor� distan
e for line segments inside P 
an be found in O(k + N2 log k)time and O(k + N) spa
e. 1. Introdu
tionThis se
tion reviews the approa
h 
ommonly used to 
ompute the non-geodesi
Fré
het distan
e, dis
usses related work, and outlines the rest of the paper. Thisinformation serves as essential ba
kground for 
omputing the geodesi
 Fré
het dis-tan
e.1.1. Fré
het distan
e ba
kground. The Fré
het distan
e is a similarity metri
that returns a value indi
ating how similar two 
urves are to ea
h other. Appli
a-tions of the Fré
het distan
e in
lude map mat
hing [20℄ and shape similarity.The Fré
het distan
e is 
ommonly illustrated by a person walking a dog on aleash [3℄. The person walks forward on one 
urve, and the dog walks forward on theDate: August 18, 2007. 1
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a)Figure 1. Two polygonal 
urves (a) are mapped onto the axes ofa two-dimensional graph (b). For polygonal 
urves, the graph issubdivided into 
ells based on the positions of the 
urve verti
es(
).other 
urve. As the person and dog move along their respe
tive 
urves, a leash ismaintained to keep tra
k of the separation between them. The maximum separationattained during the walk de�nes the required length of the leash.The Fré
het distan
e is the length of the shortest leash that makes it possiblefor the person and dog to walk from beginning to end on their respe
tive 
urveswithout breaking the leash. The leash's length is a measure of how similar the two
urves are to ea
h other. Short leashes mean the 
urves are similar; long leashesmean the 
urves are di�erent. See se
tion 2.2 for a formal de�nition of the Fré
hetdistan
e.To 
ompute the Fré
het distan
e, a way of representing all possible person anddog walks is needed. Alt and Godau's standard representation [3℄ maps the two
urves (e.g., Figure 1a) onto the axes of a two-dimensional graph (e.g., Figure 1b).Parametrizing these 
urves into the range [0, 1] for
es the graph to be de�ned ina unit square. For polygonal 
urves, the graph is partitioned into 
ells by 
uttingthe graph at every position where a 
urve has a vertex. This partitioned graph is
alled the free spa
e diagram and is illustrated in Figure 1
.The free spa
e diagram represents all possible person and dog walks along theirrespe
tive 
urves. At the beginning of the walk, the person and dog are positionedat the start of their 
urves. This position o

urs at the bottom-left 
orner of thefree spa
e diagram. At the end of the walk, the person and dog are positioned atthe end of their 
urves, and this o

urs at the upper-right 
orner of the free spa
ediagram. All walks relevant to the Fré
het distan
e are paths in the free spa
ediagram from the bottom-left 
orner to the upper-right 
orner. If the person anddog are only allowed to move forward on their 
urves (i.e., not ba
kward), thenonly monotone paths in the free spa
e diagram should be 
onsidered.The free spa
e diagram provides a means of solving a subproblem of the Fré
hetdistan
e 
alled the de
ision problem. The de
ision problem assumes a leash oflength ε is given. True is returned if a leash of length ε is long enough to permit amonotone person and dog walk from start to �nish. Otherwise, false is returned.
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e that any point (p, d) in the free spa
e diagram is asso
iated with a point
p on the person 
urve and a point d on the dog 
urve. Consequently, the point
(p, d) 
an be mapped to the distan
e d(p, d) between p and d, where this distan
emust be either ≤ ε or > ε.To solve the de
ision problem, distan
es in the free spa
e diagram are 
ategorized.Free spa
e 
onsists of all points (p, d) in the free spa
e diagram with d(p, d) ≤ ε.Intuitively, points in the free spa
e are asso
iated with positions during the walkwhere the person and dog are 
lose together. Constrained spa
e 
onsists of all pointsin the free spa
e diagram with d(p, d) > ε. Intuitively, points in the 
onstrainedspa
e are asso
iated with positions during the walk where the person and dog arefar apart.The Fré
het de
ision problem returns true only when a path exists that satis�estwo 
onditions. First, the path must be monotone and travel from the bottom-left
orner to the the upper-right 
orner of the free spa
e diagram. Se
ond, the pathmust only travel through free spa
e. We de
ide if su
h a path exists (for polygonal
urves) by subdividing the free spa
e diagram into 
ells and 
omputing ea
h 
ell'sfree spa
e. Dynami
 programming is used to propagate rea
hability information ona 
ell-by-
ell basis.After solving the de
ision problem, the idea of binary sear
h allows 
onvergingto the shortest leash length ε∗ su
h that the de
ision problem is still true. Thislength ε∗ is the Fré
het distan
e and is the solution to the Fré
het optimizationproblem. To guarantee 
onverging to the exa
t value of ε∗ in a 
ontinuous domain,parametri
 sear
h (see [2℄ and [3℄) is often used in lieu of binary sear
h.1.2. Related Work. Most previous work assumes an obsta
le-free environmentwhere the leash 
onne
ting the person to the dog has its length de�ned by an Lpmetri
. In [3℄ the Fré
het distan
e between polygonal 
urves A and B is 
omputedin arbitrary dimensions for obsta
le-free environments in O(N2 log N) time, where
N is the larger of the 
omplexities of A and B. Variations of the Fré
het distan
ehave allowed the 
urves to be simple polygons [7℄ or pie
ewise smooth [18℄ instead ofpolygonal. Fré
het distan
e has also been used su

essfully in the pra
ti
al domainof map mat
hing [20℄. All these works assume a leash length that is de�ned by an
Lp metri
.This paper's 
ontribution is to measure the leash length by its geodesi
 distan
einside a simple polygon P (instead of by its Lp distan
e). To our knowledge, thereare only two other works that employ su
h a leash. One is a workshop arti
le [15℄that 
omputes the Fré
het distan
e for polygonal 
urves A and B on the surfa
e ofa 
onvex polyhedron, but their method requires O(N3k4 log(kN)) time. The otherpaper [9℄ applies the Fré
het distan
e to morphing by 
onsidering the polygonal
urves A and B to be obsta
les that the leash must go around. Their method worksin O(N2 log2 N) time but only applies when A and B both lie on the boundary ofthe simple polygon P . Our work 
an handle both this 
ase and more general 
ases.We 
onsider P as the only obsta
le, and the 
urves are allowed to o

ur at arbitrarypositions inside P .1.3. Outline. A 
ore idea of this paper is that the free spa
e in a geodesi
 
ell ismonotone. We show how to qui
kly 
ompute a 
ell boundary and how to propagaterea
hability through a 
ell in 
onstant time. This is su�
ient to solve the geodesi
Fré
het de
ision problem. To solve the geodesi
 Fré
het optimization problem, we
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e the standard parametri
 sear
h approa
h by a novel and asymptoti
allyfaster (in the expe
ted 
ase) randomized algorithm that is based on red-blue inter-se
tion 
ounting. It is notable that the randomized algorithm also applies to thenon-geodesi
 Fré
het optimization problem in the plane.In se
tion 2, the hourglasses and funnels of Guibas et al. [10℄ are dis
ussed.These stru
tures represent shortest paths inside a simple polygon and are used toprove that any horizontal or verti
al line segment in a geodesi
 
ell has at most one
onne
ted set of free spa
e values. We also show how to 
ount and report 
ertaintypes of red-blue interse
tions. Se
tion 3 extends the results on hourglasses andfunnels to prove that a geodesi
 
ell has at most one free region. This region mustbe monotone, and rea
hability information 
an be propagated through this regionin 
onstant time on
e the 
ell boundaries are known.Se
tion 4 shows how to 
ompute the boundaries of a geodesi
 
ell, the geodesi
Fré
het de
ision problem and the geodesi
 Fré
het optimization problem. The de
i-sion problem 
an be solved in O(N2 log k) time after prepro
essing. The main resultof this paper is that the geodesi
 Fré
het distan
e between two polygonal 
urvesinside a simple bounding polygon 
an be 
omputed in O(k + (N2 log kN) logN)expe
ted time and O(k + N3 log kN) worst-
ase time, where N is the larger of the
omplexities of A and B and k is the 
omplexity of the simple polygon. This ex-pe
ted run time is almost a quadrati
 fa
tor in k faster than the straightforwardapproa
h, similar to [9℄, of partitioning ea
h 
ell into O(k2) sub
ells. Brie�y, thesesub
ells are simple 
ombinatorial regions based on pairs of hourglass intervals. Se
-tion 5 shows how to 
ompute the geodesi
 Hausdor� distan
e for sets of points orsets of line segments inside a simple polygon.2. PreliminariesTo 
ompute the geodesi
 Fré
het distan
e for two polygonal 
urves A and Binside a simple polygon P , a few 
on
epts need to be de�ned. Se
tions 2.1 and 2.2introdu
e notation and de�nitions. In se
tion 2.3, the hourglasses and funnels of[10℄ are des
ribed. Se
tions 2.4 and 2.5 show that funnels have a simple stru
ture.Se
tion 2.6 introdu
es a distan
e fun
tion for an hourglass that also has a simplestru
ture. Se
tion 2.7 shows how to perform red-blue interse
tion 
ounting and re-porting. Su
h interse
tions are theoreti
ally interesting and will also have pra
ti
alimpli
ations for solving the geodesi
 Fré
het optimization problem.2.1. Notation. Let k be the 
omplexity of a simple polygon P that 
ontains thepolygonal 
urves A and B in its interior. A geodesi
 is a path that avoids allobsta
les and 
annot be shortened by slight perturbations [16℄. Let π(a, b) denotethe geodesi
 inside P between two points a and b. The geodesi
 distan
e d(a, b)is the length of a shortest path between a and b that avoids all obsta
les, wherelength is measured by L2 distan
e.Let ↓, ↑, and ↓↑ denote de
reasing, in
reasing, and de
reasing then in
reasingfun
tions, respe
tively. For example, �H is ↓↑-bitone� means that H is a bitonefun
tion that is �rst monotone de
reasing then monotone in
reasing.2.2. De�nitions. The Fré
het distan
e is formally de�ned as
δF (A, B) = inf

f,g:[0,1]→[0,1]
sup

t∈[0,1]

d( A(f(t)), B(g(t)) )
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a)Figure 2. a) An open hourglass with marked hourglass verti
es,b) a 
losed hourglass, and 
) an interse
ting hourglass.where f and g range over 
ontinuous non-de
reasing reparametrizations. Intuitively,a free spa
e 
ell C is de�ned by two line segments ab ∈ A and cd ∈ B. More formally,suppose the polygonal 
urves are de�ned as A : [0, m] → V and B : [0, n] → V ,where V is a Eu
lidean ve
tor spa
e in the plane and m and n are, respe
tively,the number of line segments de�ning A and B. Cell Cij = [i − 1, i] × [j − 1, j] for
1 ≤ i ≤ m and 1 ≤ j ≤ n (see [3℄).2.3. Funnels and Hourglasses. All geodesi
s in a free spa
e 
ell C 
an be de-s
ribed by either the funnel or hourglass stru
ture of [10℄. A funnel des
ribes allshortest paths between a point and a line segment, so it represents a horizontal (orverti
al) line segment in a free spa
e 
ell. An hourglass des
ribes all shortest pathsbetween two line segments and represents an entire free spa
e 
ell.Let the funnel Fp,cd represent all shortest paths between an apex point p and aline segment cd. Fp,cd is the region bounded by the line segment cd and the shortestpath 
hains π(p, c) and π(p, d). That is, Fp,cd =cd ∪ π(p, c) ∪ π(p, d). The shortestpath 
hains π(p, c) and π(p, d) are �outward 
onvex� by [10℄; in other words, the
onvex hulls of π(p, c) and π(p, d) lie outside Fp,cd.There are three types of hourglasses: open, 
losed, and interse
ting. An openhourglass is de�ned by non-
rossing ab and cd and two disjoint shortest path 
hains
π(a, c) and π(b, d). A 
losed hourglass is an open hourglass but with a 
ollapsedinterior: π(a, c) and π(b, d) share a 
ommon polygonal path that is traversed by allshortest paths between ab and cd. An interse
ting hourglass is de�ned when ab and
cd 
ross and de�nes four shortest path 
hains π(a, c), π(a, d), π(b, c), and π(b, d).Open, 
losed, and interse
ting hourglasses are illustrated in Figures 2a, 2b, and 2
.In general, any type of hourglassHab,cd 
an be represented as the region boundedby shortest path 
hains and line segments. That is, Hab,cd = π(a, c) ∪ π(a, d) ∪

π(b, c) ∪ π(b, d) ∪ ab ∪ cd.We have seen that any geodesi
 
ell C 
an be des
ribed by either an open hour-glass, a 
losed hourglass, or an interse
ting hourglass. All three of these stru
tureshave O(k) verti
es, where k is the 
omplexity of the simple polygon P . This fol-lows be
ause all shortest paths (e.g., π(a, c)) inside a simple polygon P are a
y
li
,polygonal, and only have 
orners at verti
es of P [12℄.2.4. Intervals. Any geodesi
 π(p, q) in P between a �xed point p and any point
q ∈ cd 
an be des
ribed by a funnel Fp,cd with outward 
onvex 
hains π(p, c),
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Figure 4. The geodesi
 distan
e fun
tion Fp, cd is pie
ewise hy-perboli
.
π(p, d). By extending all line segments on these polygonal 
hains into lines andinterse
ting these lines with cd, a partition of cd into O(k) intervals I1, I2, ..., IR isobtained. Shortest paths from p to any point q ∈ Ij are 
ombinatorially the samefor 1 ≤ j ≤ R. See Figure 3.All shortest paths from p to any point q ∈ Ij are polygonal and have the form
p, pi, pi+1, ..., j, q where pi, ..., j are the funnel 
hain verti
es that the path visits.Let L be the length of the path p, pi, pi+1, ..., j. The length of a shortest pathfrom p to q is L + d(j, q), where d(j, q) is equal to the L2 distan
e between j and
q. Varying q along Ij yields the distan
e fun
tion d(j, Ij) + L. This fun
tion is ahyperboli
 ar
 αj sin
e d(j, Ij) equals the L2 distan
e from a point to a line segmentand L is a 
onstant. αj a
hieves its minimum distan
e at either an endpoint of Ijor the perpendi
ular from j to Ij .Sin
e d(p, Ij) is a hyperboli
 ar
, the distan
e fun
tion Fp, cd from p to the entireline segment cd is pie
ewise hyperboli
. In se
tion 2.5 we will see that Fp, cd isbitone, so at most one of the hyperboli
 ar
s is bitone; all other ar
s are monotone.2.5. Funnel Bitoni
ity. Any horizontal (or verti
al) line segment inside a geo-desi
 free spa
e 
ell has a distan
e fun
tion Fp, cd : [c, d] → R with Fp, cd(q) =

d(p, q). In se
tion 2.4, we saw that Fp, cd is pie
ewise hyperboli
, and this behavioris illustrated in Figure 4.Lemma 1. Fp, cd is ↓↑-bitone.Proof. Without loss of generality, assume that cd is verti
al. If we examine theslopes of the line segments de�ning the funnel 
hains in order from c to p along
π(c, p) and 
ontinuing from p to d along π(p, d), we see that the sequen
e of theseslopes is monotone. The two 
hains separately have monotone slopes due to their
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c

vp

d

I

Figure 5. Fp, cd is ↓↑-bitone be
ause at most one interval Iv 
anbe bitone. Dotted line segments are perpendi
ulars from ea
h 
hainvertex to cd.
onvexity. The slopes where the two 
hains meet at apex p are also monotone sin
ethe two 
hains never 
ross ea
h other.Partition cd into O(k) intervals I1, I2, ..., IR as in se
tion 2.4. Ea
h interval Ijfor 1 ≤ j ≤ R is de�ned by two rays Rj−1 and Rj that originate at 
hain vertex jand interse
t cd. Let αj ∈ Fp, cd be the hyperboli
 ar
 for Ij .
αj is bitone if and only if the perpendi
ular ⊥j from j to the line ζ supporting

cd lies stri
tly in the interior of Iv. Otherwise, αj is monotone. Let the slope of
⊥j be µ, and note that µ is 
onstant over all 
hain verti
es. Sin
e Ij is de�ned bytwo rays Rj−1, Rj from j to ζ, ⊥j will only interse
t ζ in Ij when the slope µ liesbetween the slopes of Rj−1 and Rj . Sin
e the ray slopes are monotone through theintervals I1...R, at most one bitone ar
 αv for 1 ≤ v ≤ R exists. Hen
e, at most onear
 of Fp, cd is bitone; the rest are monotone.Suppose ⊥v lies in the interior of Iv so that αv is ↓↑-bitone. By the mono-toni
ity of the rays de�ning the intervals, α1...(v−1) is ↓-monotone and α(v+1)...R is
↑-monotone. If ⊥v lies on the 
ommon boundary of Iv−1 and Iv, then α1...(v−1) is
↓-monotone and αv...R is ↑-monotone. Hen
e, Fp, cd is ↓↑-bitone. See Figure 5.

⊓⊔Corollary 1. Any horizontal (or verti
al) line segment in a free spa
e 
ell has atmost one 
onne
ted set of free spa
e values.Proof. A horizontal (or verti
al) line segment in a geodesi
 free spa
e 
ell has adistan
e fun
tion Fp, cd. Free spa
e 
onsists of all values less than or equal to agiven distan
e ε. Sin
e Lemma 1 ensures that Fp, cd is ↓↑-bitone, Fp, cd has at mostone 
onne
ted set of free spa
e values.
⊓⊔2.6. Hourglass Bitoni
ity. This se
tion introdu
es a ↓↑-bitone distan
e fun
tion

Hab, cd for the hourglass Hab, cd. Hab, cd will be useful in se
tion 3.1 for analyzingthe stru
ture of a geodesi
 free spa
e 
ell.Consider the hourglass Hab, cd. Let the shortest distan
e from a to any point on
cd o

ur at the point Ma ∈ cd. De�ne Mb similarly.As p is varied from a to b, the minimum distan
e from p to cd tra
es out afun
tion Hab, cd : [a, b] → R with Hab, cd(p) = minq∈[c,d] d(p, q). See Figure 6.
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p
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a c a
p cFigure 6. The shortest distan
e from p to any point on cd de�nes

Hab, MaMb
as p is varied from a to b.Lemma 2. Hab, cd is ↓↑-bitone.Proof. By optimal substru
ture, shortest paths from p to cd will not 
ross as p isvaried from a to b, so Hab, cd and Hab, MaMb

are identi
al fun
tions. The task is toshow that Hab, MaMb
is ↓↑-bitone regardless of whether the hourglass Hab, MaMb

isopen, 
losed, or interse
ting (
f. se
tion 2.3).Suppose that Hab, MaMb
is an open hourglass. Without loss of generality, assumethat MaMb is verti
al. Let µab be the slope of ab. Let Sa and Sb be the pointswhere horizontals from Ma and Mb interse
t ab. Sa and Sb will exist for any openhourglass Hab, MaMb

where Ma 6= Mb be
ause the position of the minimal distan
efrom p to cd always o

urs at either c, d, or a perpendi
ular to the interior of cdby [16℄.1
Hab, MaMb


an be split into three parts: two funnels FaSa, Ma
, FSbb, Mb

, and an
L2-se
tion L that lies in-between the two funnels2. Let FaSa, Ma

, FSbb, Mb
, and FLdenote distan
e fun
tions for these three stru
tures so that Hab, MaMb

has the form
FaSa, Ma

◦ FL ◦ FSbb, Mb
, where ◦ denotes 
on
atenation.At most one bitone ar
 αv de�nes Hab, MaMb

(
f. se
tion 2.5).3 This followsfrom the proof of Lemma 1 be
ause the line segment slopes on the 
hains forma monotone sequen
e from a to Ma along π(a, Ma) and 
ontinuing from Mb to balong π(Mb, b).If αv ∈FaSa, Ma
as illustrated in Figure 7a, then 
learly the slope µab < 0, so

FaSa, Ma
is ↓↑-bitone and FL and FSbb, Mb

are ↑-monotone. When αv ∈FSbb, Mb
,Figure 7b shows that µab > 0, so both FaSa, Ma

and FL are ↓-monotone and
FSbb, Mb

is ↓↑-bitone.4 If αv is part of FL, then ab and cd are parallel, so FaSa, Mais ↓-monotone, FL is 
onstant, and FSbb, Mb
is ↑-monotone (see Figure 7
). Hen
e,

Hab, cd is always ↓↑-bitone for any open hourglass.Suppose that Hab, MaMb
is a 
losed hourglass. All shortest paths from p ∈ ab to

cd will end at the same point Ma as shown in Figure 8a. Hen
e, Hab, MaMb
equals

Fab, Ma
and is ↓↑-bitone by Lemma 1.When Hab, MaMb

is an interse
ting hourglass, ab and cd will 
ross at the point
ι as illustrated in Figure 8b. Hab, MaMb

has the form Haι, Maι◦Hιb, ιMb
, where1If Ma = Mb, then H

ab, MaMb
is trivially ↓↑-bitone be
ause it equals F

ab, Ma
.2Noti
e that the funnel F

aSa, Ma
uses the se
ond subs
ript for the apex. This emphasizesthat the apex o

urs on cd instead of on ab.3If no bitone ar
 helps de�ne H

ab, MaMb
, then 
learly H

ab, MaMb
is monotone.4If µ

ab
= 0, then Ma = Mb, and H

ab, cd
is ↓↑-bitone be
ause it equals F

ab, Ma
.
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Figure 7. An open hourglass Hab, MaMb
has at most one bitonear
 αv. Regardless of the position of αv, Hab, cd is ↓-monotone forall ar
s from a to αv and ↑-monotone for all ar
s from αv to b asindi
ated by the arrows in the diagrams. FaSa, Ma

and FSbb, Mbare lightly shaded; L is heavily shaded.
b

a c

d

MbMa =

Mb

Ma

c

d
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a ι

a) b)Figure 8. a) A 
losed hourglass always has Ma = Mb. b) Aninterse
ting hourglass 
an be split into two (shaded) open hour-glasses.
Haι, Maι and Hιb, ιMb

are distan
e fun
tions for open hourglasses. By the abovearguments on open hourglasses, Haι, Maι and Hιb, ιMb
are ea
h (at-worst) ↓↑-bitone.Consider varying p from a to ι. d(a, Ma) is positive and d(ι, ι) = 0. Hen
e, Haι, Maιis a
tually ↓-monotone. Varying p from ι to b is similar: d(ι, ι) = 0 and d(b, Mb) ispositive, so Hιb, ιMb

is ↑-monotone. Therefore, Hab, cd is ↓↑-bitone.
⊓⊔2.7. Red-Blue Interse
tions. This se
tion shows how to e�
iently 
ount andreport a 
ertain type of red-blue interse
tions in the plane in an arbitrary interval

α ≤ x ≤ β. This problem is interesting both from theoreti
al and applied stan
esand will prove useful in se
tion 4.3.1 for the Fré
het optimization problem.Let R = {r1(x), r2(x), ..., rm(x)} be a set of m �red� 
urves in the plane su
hthat ea
h red 
urve is monotone de
reasing and has O(k) 
omplexity. Let B =
{b1(x), b2(x), ..., bn(x)} be a set of n �blue� 
urves in the plane where ea
h blue
urve is monotone in
reasing and has O(k) 
omplexity. Let V (k) be the time to
ompute the value of any red or blue 
urve at a given x-position.Let I(k) be the time to �nd the interse
tion of any ri(x) and bj(x). Observethat any monotone de
reasing 
urve ri(x) ∈ R interse
ts a monotone in
reasing
urve bj(x) ∈ B in at most one 
ontiguous sequen
e of points (as a 
onsequen
e
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α
(x)
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(x)
(x)

(x)

y

y Figure 9. Interse
tion 
ounting 
al
ulates that r3(x) interse
tstwo blue 
urves for x ≥ α but only interse
ts one blue 
urve for
x ≥ β. Subtra
ting these quantities and a

ounting for x = βinterse
tions reveals that r3(x) must have one interse
tion in theinterval α ≤ x ≤ β.of the monotoni
ities). For 
ounting purposes, this sequen
e is 
onsidered to be asingle interse
tion.A few assumptions are required for the below 
ounting and reporting algorithms.All red and blue 
urves should have values within an arbitrary range ymin ≤ y ≤

ymax su
h that min(ri(x)) = ymin for all 1 ≤ i ≤ m and max(bj(x)) = ymax forall 1 ≤ j ≤ n. In addition, the (open) interval α < x < β must 
ontain no leftendpoint of any red or blue 
urve.Theorem 1. The number of interse
tions in the interval α ≤ x ≤ β between everyred 
urve ri(x) ∈ R and all bj(x) ∈ B 
an be 
ounted in O(N(V (k) + log N)) totaltime, where N = max(m, n).Proof. A key idea is that if ri(p) ≥ bj(p) at x = p, then the 
urves ri(x) and bj(x)will interse
t for some x ≥ p. This follows be
ause min(ri(x)) ≤max(bj(x)).Interse
tions in the interval α ≤ x ≤ β 
an be 
ounted by taking �snapshots� ofthe 
urve positions at the endpoints α and β. The α-snapshot is found by 
omputingthe values of all red and blue 
urves at α in O(N ∗ V (k)) time and sorting thesevalues to 
reate the list Lα in O(N log N) time. The list Lβ 
an be found similarlyin O(N(V (k) + log N)) additional time.If a 
urve is de�ned entirely outside the interval α ≤ x ≤ β, then it 
an be safelyignored. If a 
urve's right endpoint lies stri
tly inside the interval, then this rightendpoint 
an 
on
eptually be extended horizontally to β. This extension will only
reate false red-blue interse
tions when the left endpoint of a bj(x) 
urve appearsat x = β su
h that bj(β) =ymax, and this spe
ial 
ase 
an easily be handled withoutin
reasing the time bounds.For 
ounting queries, the sorted list Lα is prepro
essed in O(N) time by onelinear s
an over Lα. For ea
h ri(α) ∈ Lα, let ri(α)->n be the number of bj(α)su
h that ri(α) > bj(α). De�ne ri(β)->n similarly. In essen
e, ea
h red 
urve ri(x)keeps tra
k of how many blue 
urves bj(x) lie below it be
ause these 
urves willinterse
t for some x ≥ α. Prepro
essing Lβ yields red-blue interse
tions for x ≥ β.For 
ounting purposes, the number of x ≥ α interse
tions minus the number of
x ≥ β interse
tions yields the number of interse
tions in α ≤ x < β. Sin
e it is asimple matter to 
ompute the interse
tions at x = β from the sorted list Lβ, allinterse
tions of ri(x) with B for α ≤ x ≤ β 
an be 
ounted in O(N(V (k) + log N))time. See Figure 9.

⊓⊔
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5
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r1
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(x)

(x)

Query 1: No new intersections.

Insert 2

Current CurveStep

2

Action

1

Query 5:

3

4

T

2

42

3

Figure 10. In the situation depi
ted by Figure 9, interse
tionreporting �nds that r3(x) interse
ts b2(x) in the interval α ≤ x ≤ β.Theorem 2. The interse
tions in the interval α ≤ x ≤ β between every red 
urve
ri(x) ∈ R and all bj(x) ∈ B 
an be reported in O(N(V (k) + log N + I(k)) + K)total time, where K is the total number of interse
tions reported.Proof. The goal is to 
ompute for every ri(x) a list of all bj(x) su
h that ri(x)∩bj(x)for α ≤ x ≤ β. Testing if two 
urves are equal at x = α or x = β is straightforward,so we do not mention this 
ase further. An interse
tion o

urs for α < x < β exa
tlywhen ri(α) > bj(α) and ri(β) < bj(β) are both true. Intuitively, the �rst 
onditionmeans that ri(x) must interse
t bj(x) for some x > α. The se
ond 
ondition meansthat there is no interse
tion for x ≥ β. This implies that ri(x)∩bj(x) for α < x < β.The sorted lists Lα, Lβ are together su�
ient to report all red-blue interse
-tion pairs. To extra
t these pairs e�
iently, a balan
ed binary sear
h tree TR isin
rementally 
onstru
ted from red 
urve indi
es. Ea
h blue 
urve is handled byquerying TR.Let Iβ(ri(x)) denote the index of ri(x) in the list Lβ. Similarly de�ne Iβ(bi(x)).Begin with TR = ∅. Mar
h through Lα in de
reasing order (i.e., top-to-bottomin Figure 9). Pro
ess ea
h ri(x) by inserting Iβ(ri(x)) into TR in O(log N) time.For ea
h bj(x), query TR with Iβ(bj(x)). All ri(x) with indi
es in TR less than thisquery index will interse
t bj(x). See Figure 10.

⊓⊔3. Geodesi
 Cell PropertiesAll results in this se
tion are for polygonal 
urves inside a simple polygon. Inse
tion 3.1, we show that a geodesi
 free spa
e 
ell has at most one free regionand that this region is monotone. Se
tion 3.2 extends this result to show thatrea
hability 
an be propagated through a 
ell in 
onstant time on
e its boundariesare known.3.1. Cell Free Spa
e. Consider a geodesi
 free spa
e 
ell C for polygonal 
urves
A and B inside a simple polygon. The goal of this se
tion is to show that C has atmost one free region and that this region is x and y monotone.
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all that a free spa
e 
ell C is de�ned by two line segments: ab ∈ A and
cd ∈ B. A horizontal (or verti
al) line segment in C has a distan
e fun
tion Fp, cdbetween a �xed point p ∈ ab and the line segment cd.Lemma 3. For any ε, C has at most one free spa
e region R. R must be monotoneand 
onne
ted.Proof. A simple polygon is x-monotone if any verti
al line interse
ts it in at mostone 
onne
ted interval. A polygon is y-monotone if any horizontal line interse
tsit in at most one 
onne
ted interval. By Corollary 1, any free spa
e region R in
C must be x and y monotone. Next, it is proven that all free spa
e points are
onne
ted so that C has at most one free spa
e region.Let ε > 0 be given. Take any two points (p1, q1), (p2, q2) in the free spa
e, i.e.,
d(p1, q1) ≤ ε and d(p2, q2) ≤ ε. We need to show that they are 
onne
ted in thefree spa
e. For this, �rst move verti
ally from (p1, q1) to the minimum point on itsverti
al. Do the same for (p2, q2). By Lemma 1, this movement 
auses the distan
eto de
rease monotoni
ally. By Lemma 2, any two minimum points are 
onne
tedby a ↓↑-bitone distan
e fun
tion Hab, cd (
f. se
tion 2.6), but as the starting pointsare ≤ ε all points on this 
onstru
ted path are ≤ ε.

⊓⊔3.2. Cell Rea
hability. This se
tion proves that given C's boundaries, it is pos-sible to propagate rea
hability information through C in 
onstant time. In otherwords, the spa
e inside C's boundaries is not required to 
ompute the Fré
hetdistan
e.Rea
hability information is 
ru
ial to solving the Fré
het de
ision problem. Re-
all from se
tion 1 that in order to solve the Fré
het de
ision problem we need toknow if a monotone path exists through the free spa
e diagram from the bottom-left
orner to the upper-right 
orner. Rea
hability information is a way of lo
ally en
od-ing on a 
ell-by-
ell basis those free spa
e points that are rea
hable by a monotonepath from the bottom-left 
orner of the free spa
e diagram. Let CL, CT , CR, CBbe the left, top, right, and bottom boundaries of C, respe
tively.Lemma 4. Given the rea
hable points for CL and CB plus the free spa
e points on
CR and CT , rea
hability information 
an be propagated to CR and CT in 
onstanttime.Proof. Lemma 1 ensures that CL and CB ea
h have at most one 
onne
ted set ofrea
hable points. If some point p ∈ CL is rea
hable, then all free spa
e on CT isrea
hable. This is true be
ause C's free region R is both 
onne
ted and monotone.Consequently, there must be some path π(p, l) from p ∈ CL to CT 's leftmost freespa
e point l. π(p, l) is monotone be
ause one 
an follow the monotone free spa
eboundary between these two points. Symmetri
ally, if any point on CB is rea
hable,then all free spa
e on CR is rea
hable. See Figure 11a.If no point on CL is rea
hable, then the only possible monotone path to CT mustoriginate at CB . Imagine shooting a verti
al ray V upward from CB 's leftmostrea
hable point. Let V interse
t CT at the point q. If q is a free spa
e point,then q is the leftmost rea
hable point on CT , and all free spa
e on CT to the rightof q is rea
hable. If q is a 
onstrained spa
e point, then CT 's free interval eitherlies 
ompletely left of q or 
ompletely right of q. The former 
ase is 
ompletelyunrea
hable from CB . The latter 
ase is 
ompletely rea
hable sin
e one 
an follow
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p

b) c)a)

V

ql

V

Figure 11. Propagating rea
hability information through 
ell Ctakes 
onstant time on
e C's boundaries are known.
V until it hits 
onstrained spa
e and then follow the monotone free spa
e boundaryto the leftmost free spa
e point on CT . Propagating rea
hability from CL to CR isa symmetri
 
ase. See Figures 11b and 11
.

⊓⊔4. Geodesi
 Fré
het AlgorithmThe goal of this se
tion is to 
ompute the exa
t geodesi
 Fré
het distan
e δFbetween two polygonal 
urves inside a simple polygon. Se
tion 4.1 shows how to
ompute one 
ell's boundaries in O(log k) time, and se
tion 4.2 uses this result tosolve the geodesi
 Fré
het de
ision problem. Se
tions 4.3, 4.4, and 4.5 use the de
i-sion problem and red-blue interse
tion 
ounting to solve the Fré
het optimizationproblem. This approa
h is novel in that it is a pra
ti
al alternative to parametri
sear
h for both the geodesi
 and non-geodesi
 Fré
het optimization problems in theplane.4.1. Computing one 
ell's boundaries in O(log k) time. A 
ell boundary isa horizontal (or verti
al) line segment in a free spa
e 
ell. This boundary 
an beasso
iated with a funnel Fp,cd with a distan
e fun
tion Fp, cd that is ↓↑-bitone (
f.Lemma 1). Given ε ≥ 0, 
omputing the free spa
e on a 
ell boundary requires�nding the (at most two) interse
tions t1, t2 of Fp, cd and y = ε.
Fp, cd is de�ned by O(k) ar
s α1...R as shown in se
tion 2.4. Any ar
 αj for

1 ≤ j ≤ R is de�ned by both a point and a line segment. The point is a 
hainvertex j ∈π(p, c)∪π(p, d) (ex
luding endpoints c, d). The line segment is an interval
Ij ∈ cd. αj 
an be 
omputed in 
onstant time on
e j and Ij are known be
ause αjrepresents the L2 distan
e between the point j and the line segment Ij . See Figure12a.Suppose the 
hains π(p, c) and π(p, d) are known. A straightforward way to
ompute the free spa
e on a 
ell boundary is to sequentially 
ompute all of the ar
s
α1...R as follows. For ea
h 
hain vertex j, 
ompute Ij by extending the two 
hainline segments adja
ent to j into lines and interse
ting them with cd. αj 
an theneasily be 
onstru
ted from j and Ij . Repeating this pro
ess for all 
hain verti
essu�
es to 
onstru
t α1...R in O(k) time. See Figure 12b. On
e all the ar
s are
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b)Figure 12. a) A funnel Fp, cd is asso
iated with a 
ell boundary.b) The ar
s α1...R de�ne Fp, cd. 
) On
e the (at most two) inter-se
tions t1, t2 of Fp, cd with the line y = ε have been found, thefree spa
e on a 
ell boundary is immediately known.known, ea
h ar
 
an be interse
ted with the line y = ε in 
onstant time. Theseinterse
tions are su�
ient to de�ne the free spa
e on a 
ell boundary as illustratedin Figure 12
.To improve the run time of the above approa
h from O(k) to O(log k) time,realize that it is not ne
essary to expli
itly 
onstru
t all of the ar
s of Fp, cd. Thear
s themselves are unimportant. Only the interse
tions t1 and t2 of α1...R with
y = ε are required, and a binary sear
h 
an �nd these interse
tions by examiningonly O(log k) ar
s. To perform this sear
h, the 
hains π(p, c) and π(p, d) must beavailable in O(log k) time, and the 
hain data stru
ture must support logarithmi
sear
hes over the 
hain verti
es.The 
hains π(p, c) and π(p, d) 
an be 
onstru
ted in O(log k) time (after O(k)prepro
essing) by the algorithms of Guibas and Hershberger [11℄, [13℄. These algo-rithms represent a 
hain by a binary sear
h tree T with O(log k) height.Even though T 
an have O(k) 
omplexity, it 
an be 
onstru
ted in only O(log k)time through 
lever use of prepro
essing stru
tures [11℄. A 
riti
al property shownin [13, p. 232℄ is that two adja
ent trees of height h(T1) and h(T2) 
an be 
on
ate-nated (i.e., merged) into a new tree with height h(T3) ≤ max(h(T1), h(T2)) + 1.The prepro
essing step of [11℄ triangulates the simple polygon P and 
omputes
onstant-size trees for ea
h triangle. These trees are repeatedly merged in bottom-up fashion to 
reate a �balan
ed hierar
hi
al de
omposition� of P [11℄. Ea
h ofthese pre
omputed trees is the result of O(log k) merge operations, so the height ofany pre
omputed tree is O(log k) .Queries are handled by 
on
atenating at most a logarithmi
 number of pre
om-puted trees together [11, p. 56℄. Sin
e ea
h 
on
atenation in
reases the height ofthe tree by at most one, the �nal tree T will have O(log k) height. The query timeto 
onstru
t T is O(log k) be
ause [11, p. 61-2℄ ensures that during the query asigni�
ant number of 
on
atenations o

ur on trees of small height.To �nd π(p, c), perform a query on the points p and c. The query 
reates abinary sear
h tree Tc that represents π(p, c) in O(log k) time. The 
onstru
tion of
Td for π(p, d) is similar.
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hes on Tc and Td 
an be performed to �nd the interse
tions t1, t2if ar
s are available to guide the sear
h. Sin
e nodes in Tc and Td 
an be dire
tlyasso
iated with edges but not with ar
s [13, p. 233℄, a 
onversion is needed.Converting a node into an ar
 is possible in 
onstant time. An ar
 αv is de�nedby a 
hain vertex v and a line segment Iv (
f. se
tion 2.4). Let an arbitrary treenode n represent the edge vw, where v and w are adja
ent 
hain verti
es. To
ompute Iv, the two 
hain line segments adja
ent to v must be found. Clearly, vwis one of these edges. The other edge uv is the prede
essor of vw.Lemma 5. For any edge vw in Tc or Td, its prede
essor uv 
an be found in 
onstanttime.Proof. To �nd a node's prede
essor in 
onstant time, the algorithms of [11℄ and [13℄
an be extended so that every node n has a pointer nρ to its immediate prede
essor.To support 
onstant time updates to nρ, n also needs a pointer nl to the largestvalued node in the tree rooted at n. Adding these pointers requires modifying theprepro
essing step of [11℄ so that these pointers are initialized for all nodes in a
onstant-sized 
hain. In addition to this base 
ase, the 
on
atenation pro
ess isalso updated.The 
on
atenation pro
ess merges trees T1 and T2 into T3. It 
reates a new rootnode r and modi�es nodes on two root-to-leaf paths: one in T1 and one in T2 [13,p. 233-4℄. Begin by updating nl for ea
h of these nodes. nl either points to n itselfor to ol, where o is n's right 
hild. Ea
h of these updates takes 
onstant time ifperformed in bottom-up fashion.Updating nρ on a root-to-leaf path should also be performed bottom-up. If anarbitrary node n (e.g., node 4 in Figure 13) has a left 
hild m, then nρ is simply
ml. If n has no left 
hild (e.g., node 5 in Figure 13), then nρ is the �rst an
estor n̂su
h that n is a right des
endant of n̂. This an
estor 
an be maintained during thetraversal so that n̂ is always available in 
onstant time. If no su
h an
estor exists,then n is the smallest node in the tree and 
orre
tly has no prede
essor.There are two �nal prede
essors to update to 
omplete the 
on
atenation. Let rbe the new root and q be r's left 
hild. Also let w be the smallest node in the treerooted at r's right 
hild (e.g., node 9 in Figure 13). rρ equals ql, and wρequals r.All pointer updates 
an be performed in the O(h(T1)+ h(T2)) time that is allowedper 
on
atenation [13, p. 232℄.

⊓⊔Lemma 6. Both the minimum value of Fp, cd and the (at most two) interse
tions
t1, t2 of Fp, cd with the line y = ε 
an be found for any ε ≥ 0 in O(log k) time(after prepro
essing).Proof. Binary sear
hes on Tc and Td to �nd t1 and t2 
an start by sear
hing for thebitone ar
 αv in both trees. αv 
ontains the minimum value of Fp, cd, and there isat most one bitone ar
 in Tc ∪ Td be
ause the trees together represent the 
hainsof the funnel Fp,cd (
f. Lemma 1).Following the binary sear
h paradigm, separately traverse ea
h tree in sear
h ofthe bitone ar
 αv. At the root node r use rρ to 
onstru
t αr in 
onstant time (
f.Lemma 5). If αr is bitone, then αv has been found, and this step is 
omplete. If αris ↑-monotone, then re
urse on the left 
hild of r. Otherwise, re
urse on the right
hild of r.
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Figure 13. Con
atenation involves updating prede
essors inthree lo
ations: the new root r, the smallest valued node w in
r's right subtree, and two (boxed) root-to-leaf paths. Althoughnodes are asso
iated with edges, they are shown with integer val-ues to simplify the prede
essor relationship that is indi
ated by thearrows.The tree that does not 
ontain αv has a monotone sequen
e of ar
s. The othertree has at most two monotone ar
 sequen
es: one on ea
h side of αv. The in-terse
tions t1 and t2 of these monotone ar
 sequen
es with y = ε 
an be found inlogarithmi
 time. Simply test the endpoints of the (monotone) 
urrent ar
 αr in
onstant time. If the endpoints of αr de�ne a range that 
ontains ε, then �nd theexa
t interse
tion of αr with y = ε. Otherwise, re
urse on the appropriate 
hild of

r.
⊓⊔On
e the interse
tions t1 and t2 are known, they must be mapped onto the 
ellboundary. On
e this mapping is known, it is trivial to de�ne the free spa
e for any
ell boundary.Lemma 7. Let t be an arbitrary point on any ar
 αr ∈Fp, cd that is de�ned by theinterval Ir. The position of t on the 
ell boundary 
an be found in O(1) time.Proof. Let the endpoints of Ir de�ne the (
losed) range [i, j] on the 
ell boundary.Compute the ar
-length of αr from its left endpoint to t and divide this value bythe total ar
-length of αr. This quotient supplies the position in the range [i, j]where t o

urs. Sin
e all of these steps take 
onstant time, the position of t on the
ell boundary is available in 
onstant time.
⊓⊔Corollary 2. The free spa
e on all four boundaries of a single 
ell 
an be found in

O(log k) time.Proof. This result follows immediately from Lemmas 6 and 7.
⊓⊔4.2. Geodesi
 Fré
het De
ision Problem.Theorem 3. After a one-time prepro
essing step of O(k) time [11℄, the geodesi
Fré
het de
ision problem for polygonal 
urves A and B inside a simple polygon P
an be solved for any ε ≥ 0 in O(N2 log k) time and O(k + N) spa
e.
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ells in the free spa
e diagram. Compute all 
ell bound-aries in O(N2 log k) time (
f. Corollary 2) and propagate rea
hability informationthrough all 
ells in O(N2) time (
f. Lemma 4). Return true if the upper right
orner of the free spa
e diagram is rea
hable. Return false otherwise.The spa
e bounds follow be
ause the 
ells 
an be handled via dynami
 program-ming su
h that only two rows need to reside in memory at any one time. Thesetwo rows require only O(N) storage be
ause only O(1) spa
e per 
ell is needed tode�ne the 
ell boundaries. The O(k) term 
omes from storing the prepro
essingstru
tures of [11℄ throughout the algorithm's exe
ution.
⊓⊔4.3. Geodesi
 Fré
het Optimization Problem. Let ε∗ be the minimum valueof ε su
h that the Fré
het de
ision problem returns true. That is, ε∗ equals theFré
het distan
e δF . Parametri
 Sear
h is a te
hnique 
ommonly used to �nd ε∗(see [3℄, [19℄, [2℄, and [8℄).5. The typi
al approa
h to �nd ε∗ is to sort all the
ell boundary fun
tions based on the unknown parameter ε∗. The 
omparisonsperformed during the sort guarantee that the result of the de
ision problem isknown for all �
riti
al values� [3℄ that 
ould potentially de�ne ε∗.Previous sorting algorithms have operated on 
ell boundaries of 
onstant 
om-plexity. The geodesi
 
ase is di�erent be
ause ea
h 
ell boundary has O(k) 
om-plexity. As a result, a straightforward parametri
 sear
h based on sorting thesevalues would require O(kN2 log kN) time even when using Cole's [8℄ optimization.6We present a randomized algorithmwith expe
ted run timeO(k+(N2 log kN) log N)and worst-
ase run time O(k+N3 log kN). This algorithm is an order of magnitudefaster than parametri
 sear
h in the expe
ted 
ase. Both algorithms involve 
ubi
fa
tors in the worst-
ase.Ea
h 
ell boundary has at most one free spa
e interval. The upper boundaryof this interval is a fun
tion bij(ε), and the lower boundary of this interval is afun
tion aij(ε). See Figure 14a.The seminal work of Alt and Godau [3℄ de�nes three types of 
riti
al values forthe Fré
het distan
e. There are exa
tly two type (a) 
riti
al values asso
iated withdistan
es between the starting points of A and B and the ending points of A and

B. Type (b) 
riti
al values o

ur O(N2) times when aij(ε) = bij(ε). See Figure14b.Type (a) and (b) 
riti
al values o

ur O(N2) times and are easily handled in
O((N2 log k) log N) time. This pro
ess involves 
omputing values in O(N2 log k)time, sorting in O(N2 log N) time, and then running the de
ision problem O(log N)times. Ea
h exe
ution of the de
ision problem resolves half of the remaining 
riti
alvalues. Resolving the type (a) and (b) 
riti
al values as a �rst step will lead to anobservation that simpli�es the randomized algorithm on type (
) 
riti
al values.Alt and Godau [3℄ show that type (
) 
riti
al values o

ur when the position of
aij(ε) in 
ell Cij equals the position of bkj(ε) in 
ell Ckj in the free spa
e diagram.See Figure 14a.5An easier to implement alternative to parametri
 sear
h is to run the de
ision problem on
efor every bit of a

ura
y that is desired. This approa
h runs in O((N2 log k)B) time, where B isthe desired number of bits of a

ura
y [19℄. This approa
h requires only O(k + N) spa
e usingrow-based dynami
 programming for the de
ision problem.6A variation of the general sorting problem 
alled the �nuts and bolts� problem (see [14℄) istantalizingly 
lose to an a

eptable O(N2 log N) sort, but it is not solvable in the general 
ase.
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Critical value
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1.00.0 0.0 1.0
Position on cell boundary

b

Position on cell boundary
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akj

Figure 14. There are O(N2) type (b) 
riti
al values and O(N3)type (
) 
riti
al values.As ε in
reases, Figure 14b shows that aij(ε) is ↓-monotone on the 
ell boundaryand bij(ε) is ↑-monotone. This follows from Lemma 1. As illustrated in Figure14
, aij(ε) and bkj(ε) interse
t at most on
e. This follows from the monotoni
itiesand pie
ewise hyperboli
 stru
tures of aij(ε) and bkj(ε). Hen
e, there are O(N2)interse
tions of aij(ε) and bkj(ε) in row j and a total of O(N3) type (
) 
riti
alvalues over all rows. There are also O(N2) interse
tions of aij(ε) and bik(ε) in
olumn i and a total of O(N3) additional type (
) 
riti
al values over all 
olumns.Lemma 8. The interse
tion of aij(ε) and bkl(ε) 
an be found for any ε ≥ 0 in
O(log k) time after prepro
essing.Proof. Using the approa
h of se
tion 4.1, 
onstru
t the binary sear
h trees Ta and
Tb in O(log k) time that are, respe
tively, asso
iated with the monotone fun
tions
aij(ε) and bkl(ε). We show that a logarithmi
 sear
h over Ta and Tb is su�
ient to�nd the interse
tion of aij(ε) and bkl(ε) or report that no interse
tion exists.Start at the roots of both trees. In O(1) time build the ar
 αa for the 
urrentnode in Ta. Using the monotoni
ity of αa, 
onstru
t two axis-parallel re
tangles
ra1, ra2 in 
onstant time su
h that ra1 ∪ ra2 
ontains all potential 
oordinates forthe other ar
s in Ta. Repeat this pro
ess for αb, rb1, and rb2.Figure 15 illustrates the general idea. In Figure 15a, it should be 
lear thatneither αb nor any ar
 in rb2 
an be involved in an interse
tion be
ause αb ∪ rb2 isdisjoint from ra1 ∪ αa ∪ ra2. Consequently, it is 
orre
t to move to the left 
hildof the 
urrent node in Tb and update αb. Figure 15b shows that in the next step,neither αa nor any ar
 in ra1 is involved in an interse
tion. Consequently, move tothe right 
hild of the 
urrent node in Ta and update αa. The third step in Figure15
 shows that αb is the only ar
 in Tb that 
an interse
t an ar
 in Ta. Continuingthe sear
h on Ta is su�
ient to �nd this interse
tion or determine that it does notexist.Ea
h iteration, an algorithm 
an either return the interse
tion of αa∩αb if itexists, report that there is no interse
tion, or update αa or αb and 
ontinue withthe next iteration. We show next that at ea
h step it is always possible to updateeither αa or αb.Suppose that p is an endpoint of αa. Let A = ra1 ∪ p ∪ ra2 and note that
A ⊃ (ra1∪αa∪ra2). Let B = rb1∪αb∪rb2 for an arbitrary αb. Several observationsfollow dire
tly from the monotoni
ities of aij(ε) and bkl(ε). If p is disjoint from B,
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a)Figure 15. Example steps to �nd the interse
tion of aij(ε) and bkl(ε).
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r

c)b)a)Figure 16. Interse
ting aij(ε) and bkl(ε) takes O(log k) time.Ar
s that 
an be safely dis
arded are 
rossed out.then B 
an interse
t at most one of ra1, ra2. Hen
e, either p ∪ ra1 or p ∪ ra2 
anbe dis
arded (see Figure 16a). Similarly, if p lies stri
tly in the interior of rb1 ∪ rb2,then either αb ∪ rb1 or αb ∪ rb2 
an be dis
arded (see Figure 16b). When p liespre
isely on the boundary of rb1 or rb2, then it is possible for B to interse
t ra1, p,and ra2 (see Figure 16
). However, sin
e endpoints are shared by adja
ent ar
s, itis permissible to dis
ard either p∪ ra1 or p∪ ra2 and also either αb ∪ rb1 or αb ∪ rb2.Hen
e, at ea
h step it is always possible to update either αa or αb.The run time follows be
ause ea
h step performs 
onstant work on four re
tanglesand two ar
s to determine how to update the ar
s for the next step. Sin
e the trees
Ta and Tb have O(log k) height, the total number of steps is O(log k). Hen
e, analgorithm 
an �nd the interse
tion of aij(ε) and bkl(ε) (or determine that no su
hinterse
tion exists) in O(log k) time.

⊓⊔The below observations imply that Theorems 1 and 2 
an be applied to 
ountand report the number of type (
) 
riti
al values in the 
losed interval [α, β].Observation 1. Pre
omputing the type (a) and type (b) 
riti
al values of [3℄ shrinksthe (
losed) interval [α, β] 
ontaining ε∗ su
h that no new aij(ε), bkl(ε) appear inthe open interval (α, β) when pro
essing the type (
) 
riti
al values.Observation 2. All aij(ε) have minimum values at the bottom of the 
ell bound-ary. All bij(ε) have maximum values at the top of the 
ell boundary. That is,
min(aij(ε)) = 0.0 and max(bij(ε)) = 1.0 for all 1 ≤ i, j ≤ N .
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Fré
het optimization problem. This algorithm is asymptoti
ally faster than para-metri
 sear
h by an order of magnitude in the expe
ted 
ase and shares a 
ubi
 runtime with parametri
 sear
h in the worst-
ase.(1) Pre
ompute and sort all type (a) and type (b) 
riti
al values inO(N2 log kN)time (
f. Lemma 6). Run the de
ision problem O(log N) times to resolvethese values and shrink the ε∗ interval down to [α, β] in O((N2 log k) log N)time.(2) Let j represent an arbitrary row in the free spa
e diagram. Count thenumber κj of type (
) 
riti
al values for ea
h row j in the interval [α, β]using Theorem 1. Interse
tion 
ounting requires O(N log kN) time per rowfor a total of O(N2 log kN) time for all rows. Let Cj be the 
ounting datastru
ture for row j.(3) To a
hieve a fast expe
ted run time, use Qui
ksort's paradigm to pi
k arandom interse
tion for ea
h row.7 To �nd a random interse
tion for row
j, pi
k a random number between 1 and κj . Sin
e every aij(ε) ∈Cj storesthe number of interse
tions in whi
h it is involved, a sear
h through Cj 
andetermine the parti
ular aRj(ε) that is involved in the randomly sele
tedinterse
tion. On
e aRj(ε) is known, its O(N) interse
tions in [α, β] 
an bedetermined in O(N log k) time by testing all bkj(ε) that lie below aRj(ε) in
Cj 's list Lα (
f. Lemma 8). The randomly sele
ted interse
tion ϑj is thenimmediately available and 
an be stored for later use.8(4) To a
hieve a fast worst-
ase run time, also pi
k the aMj(ε) in ea
h rowthat has the most interse
tions. Add all interse
tions in [α, β] that involve
aMj(ε) to a global pool P of unresolved 
riti
al values9 and delete aMj(ε)from any future 
onsideration. If desired, the interse
tions for the randomlysele
ted aRj(ε) 
an also be added to P .(5) O(N2) values are added to P ea
h step after �nding O(N) interse
tions forea
h row. Sort all values in P , and �nd the median Ξ of these values. Also�nd the median Ψ of the O(N) randomly sele
ted ϑj in O(N) time usingthe standard median algorithm mentioned in [14℄.(6) Run the de
ision problem twi
e: on
e on Ξ; on
e on Ψ. This shrinks theinterval [α, β] and halves the size of P . Repeat steps 2 through 6 until allrow -based type (
) 
riti
al values have been resolved.(7) Resolve all 
olumn-based type (
) 
riti
al values in the same spirit as steps2 through 6.(8) Return the smallest 
riti
al value that satis�es the de
ision problem (i.e.,
ε∗) as the value of the geodesi
 Fré
het distan
e.4.4. Geodesi
 Fré
het Distan
e Run Time.Theorem 4. The exa
t geodesi
 Fré
het distan
e between two polygonal 
urves Aand B inside a simple bounding polygon P 
an be 
omputed in O(k+(N2 log kN) log N)7Pi
king a 
riti
al value at random is related to the distan
e sele
tion problem [6℄ and ismentioned in [1℄, but to our knowledge, this alternative to parametri
 sear
h has never beenapplied to the Fré
het distan
e.8In pra
ti
e, the median of the interse
tions is a better 
hoi
e for ϑj .9The idea of a global pool is similar to Cole's optimization for parametri
 sear
h [8℄.
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ted time and O(k + N3 log kN) worst-
ase time, where N is the larger of the
omplexities of A and B and k is the 
omplexity of P . O(k +N2) spa
e is required.Proof. Prepro
ess P on
e for shortest path queries in O(k) time [11℄. In the average
ase, ea
h exe
ution of the de
ision problem will essentially 
ut the total number ofunresolved type (
) 
riti
al values in half. This follows from the well-known proofof Qui
ksort's expe
ted run time. Consequently, the expe
ted number of iterationsof the algorithm is O(log N3) = O(log N).In the worst-
ase, ea
h of the O(N) aij(ε) in a row will be pi
ked as aMj(ε).Therefore, ea
h row 
an require at most O(N) iterations. Sin
e all rows are pro-
essed ea
h iteration, the entire algorithm requires at most O(N) iterations forrow -based 
riti
al values. By a similar argument, 
olumn-based 
riti
al values alsorequire at most O(N) iterations.The size of the pool P is expressed by the re
urren
e S(x) = S(x−1)+O(N2)
2 ,where x is the 
urrent step number, and S(0) = 0. Intuitively, ea
h steps adds

O(N2) values to P and then half the values in P are always resolved. It is notdi�
ult to see that S(x) ∈ O(N2) for any step number x.Ea
h iteration of the algorithm requires interse
tion 
ounting and interse
tion
al
ulations for O(N) rows (or 
olumns) at a 
ost of O(N2 log kN) time. In ad-dition, the global pool P is sorted in O(N2 log N) time, and the de
ision prob-lem is exe
uted in O(N2 log k) time. Consequently, the expe
ted run time is
O(k+(N2 log kN) log N) and the worst-
ase run time is O(k+N3 log kN) in
luding
O(k) prepro
essing time for geodesi
s.The prepro
essing step of [11℄ requires O(k) spa
e, and this spa
e must remainallo
ated throughout the algorithm. O(N2) additional spa
e is su�
ient for theremaining steps.

⊓⊔4.5. Non-Geodesi
 Fré
het Distan
e Run Time. Although the exa
t non-geodesi
 Fré
het distan
e is normally 
omputed in O(N2 log N) time using para-metri
 sear
h (see [3℄), the 
onstant fa
tors involved in parametri
 sear
h 
an beenormous [8℄. To mitigate these expensive 
onstant fa
tors, Oostrum and Veltkamp[19℄ have implemented a Qui
ksort-based parametri
 sear
h algorithm.To the best of our knowledge, the randomized algorithm in se
tion 4.3.1 pro-vides the �rst pra
ti
al alternative to parametri
 sear
h for solving the Fré
hetoptimization problem.Theorem 5. The exa
t non-geodesi
 Fré
het distan
e between two polygonal 
urves
A and B in the plane 
an be 
omputed in O(N2 log2 N) expe
ted time, where N isthe larger of the 
omplexities of A and B. O(N2) spa
e is required.Proof. The argument is very similar to the proof of Theorem 4. The main di�eren
eis that non-geodesi
 distan
es 
an be 
omputed in O(1) time (instead of the O(log k)time needed for geodesi
 distan
es).

⊓⊔5. Geodesi
 Hausdorff Distan
eHausdor� distan
e is a similarity metri
 
ommonly used to 
ompare sets of pointsor sets of line segments. The dire
ted Hausdor� distan
e 
an be formally de�ned as
δ̃H(A, B) = supa∈A infb∈B d(a, b), where A and B are sets and d(a, b) is the geodesi
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e between a and b (see [3℄ and [5℄). Intuitively, the Hausdor� distan
e�nds for ea
h a ∈ A the distan
e to its nearest neighbor in B. The supremum ofthese nearest neighbor distan
es is δ̃H(A, B). The undire
ted Hausdor� distan
eis the larger of the two dire
ted distan
es: δH(A, B) = max(δ̃H(A, B), δ̃H(B, A)).Se
tions 5.1 and 5.2 show how to 
ompute δH inside a simple polygon for sets ofpoints or sets of line segments.5.1. Points.Theorem 6. δH(A, B) for point sets A, B inside a simple polygon P 
an be 
om-puted in O((k + N) log(k + N)) time and O(k + N) spa
e, where N is the larger ofthe 
omplexities of A and B and k is the 
omplexity of P .Proof. Pre
ompute the geodesi
 Voronoi diagrams V DA, V DB for A and B inside
P . These 
an be found in O((k + N) log(k + N)) time and O(k + N) spa
e usingthe algorithm of [17℄. Also prepro
ess P for shortest path queries in O(k) time andspa
e using the algorithm of [13℄.For ea
h point a ∈ A, �nd its nearest neighbor a′ ∈ B in O(log k) time via pointlo
ation in V DB and 
ompute the geodesi
 distan
e d(a, a′) in O(log k) additionaltime using the algorithm of [13℄. Return the maximum of these distan
es as thevalue of δ̃H(A, B). Compute δ̃H(B, A) is a similar manner.Cal
ulating δ̃H(A, B) requiresO(log k) time for ea
h point in A; this isO(N log k)total time after prepro
essing. In
luding prepro
essing yields a run time of O(k +
N) log(k+N)). The spa
e bounds are also dominated by the O(k +N) prepro
ess-ing. δ̃H(B, A) requires identi
al time and spa
e bounds as does δH(A, B) sin
e itis the larger of δ̃H(A, B) and δ̃H(B, A).

⊓⊔5.2. Line Segments. The dire
ted Hausdor� distan
e δ̃H(A, B) for sets of linesegments A and B is 
omputed by �nding for ea
h a ∈ A the nearest neighborpoint on any line segment in B to any point on a. The result is a set of nearestneighbor distan
es, and δ̃H(A, B) is the supremum of these distan
es. It has beenshown in [4℄ that by interse
ting line segments with Voronoi edges the numberof 
riti
al points that must be 
onsidered is O(1) per line segment. However, nogeodesi
 Voronoi diagram for line segments has been published to our knowledge,so the below algorithm essentially 
omputes geodesi
 distan
es between all pairs
a ∈ A, b ∈ B of line segments.Theorem 7. δH(A, B) for sets of line segments A, B inside a simple polygon P
an be 
omputed in O(k+N2 log k) time and O(k+N) spa
e, where N is the largerof the 
omplexities of A and B and k is the 
omplexity of P .Proof. Consider �rst the simple 
ase of 
omputing δ̃H(ab, cd) between two linesegments. δ̃H(ab, cd) is exa
tly the minimum value of Hab, cd, where Hab, cd is adistan
e fun
tion de�ned in se
tion 2.6 for the hourglass Hab, cd.The task is to �nd the minimum value of Hab, cd for any type of hourglass
Hab, cd. For an interse
ting hourglass, (
f. 2.3), 
learly δ̃H(ab, cd) = 0 sin
e ab and
cd interse
t.For a 
losed hourglass, Hab, cd equals the ↓↑-bitone distan
e fun
tion Fab, Ma

(
f.se
tion 2.6). The minimum value of Fab, Ma
is available in O(log k) time by Lemma
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e the position of Ma is known. Ma ∈ cd (
f. se
tion 2.6) is the position on
cd where the minimum distan
e in Fa, cd o

urs. Therefore, it 
an also be found in
O(log k) time by Lemma 6.An open hourglass is easier to handle on
e it is split into three pie
es de�ned by
Ma, Mb ∈ cd as demonstrated in se
tion 2.6. Ma 
an be found in O(log k) time asdes
ribed above, and Mb 
an be found similarly.For the open hourglassHab, cd, Hab, cd is the 
on
atenation of distan
e fun
tionsfor two funnels and an L2-se
tion (
f. se
tion 2.6). The minimum value for Hab, cd
an be found in O(log k) time by simply �nding the minimum distan
e for bothfunnels and returning the smaller value. The L2-se
tion need not be 
onsidered sin
eits distan
e fun
tion is monotone. This means that given any two line segments aband cd, δ̃H(ab, cd) 
an be 
omputed in O(log k) time after prepro
essing.

δ̃H(A, B) 
an be 
omputed for sets A, B as follows. For a single line segment
a ∈ A 
ompute the minimum distan
e to every b ∈ B. This yields the distan
e to
a's nearest neighbor in B in O(N log k) time. Repeating this step for every a ∈ Aand returning the supremum of all the nearest neighbor distan
es yields δ̃H(A, B)in O(N2 log k) time after O(k) prepro
essing (see [13℄) for shortest paths.Only O(k) spa
e is needed for prepro
essing but 
learly the simple polygon andsets A, B must be stored, so the spa
e requirement is O(k + N). δ̃H(B, A) and
δH(A, B) have identi
al time and spa
e bounds.

⊓⊔6. Con
lusionTo 
ompute the geodesi
 Fré
het distan
e between two polygonal 
urves insidea simple polygon, we have proven that a geodesi
 
ell has at most one free spa
eregion R and that R must be monotone. It follows from the monotoni
ity of R thatrea
hability information 
an be propagated through a 
ell in 
onstant time on
ethe 
ell boundaries are known. By extending the shortest path algorithm of [11℄and [13℄, the boundaries of a single 
ell 
an be 
omputed in logarithmi
 time, andthis approa
h leads to an e�
ient algorithm to solve the geodesi
 Fré
het de
isionproblem.A randomized algorithm based on 
ounting red-blue interse
tions inside an in-terval [α, β] is used to solve the geodesi
 Fré
het optimization problem in lieu of thestandard parametri
 sear
h approa
h. The randomized algorithm is also a pra
ti
alalternative to parametri
 sear
h for the non-geodesi
 Fré
het optimization problemin the plane.These results allow 
omputing the geodesi
 Fré
het distan
e between two polygo-nal 
urves A and B inside a simple bounding polygon P in O(k+(N2 log kN) logN)expe
ted time, where N is the larger of the 
omplexities of A and B and k is the
omplexity of P . In the worst-
ase, both the randomized algorithm and parametri
sear
h in
lude 
ubi
 terms. In the expe
ted 
ase, the randomized algorithm is anorder of magnitude faster be
ause a straightforward parametri
 sear
h (even withCole's [8℄ optimization) would need to sort O(kN2) values.The beauty of the geodesi
 Fré
het de
ision problem is that 
ell boundaries 
anbe 
omputed in the same asymptoti
 time that it takes to 
ompute a shortest path.By [13℄, the algorithm used to 
ompute these shortest paths is optimal. Therefore,it is unlikely that a single 
ell's boundaries 
an be 
omputed asymptoti
ally faster
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luster 
ells together to a
hieve a superior runtime has potential but would likely lose the ability to perform logarithmi
 sear
hes.The geodesi
 Hausdor� distan
e for point sets inside a simple polygon 
an be
omputed in O((k + N) log(k + N)) time and O(k + N) spa
e. The approa
h isbased on geodesi
 Voronoi diagrams and geodesi
 distan
e queries. As we know ofno published algorithm to 
reate the geodesi
 Voronoi diagram for line segments,the geodesi
 Hausdor� distan
e for line segments is more di�
ult to 
ompute. Ourapproa
h uses O(k + N2 log k) time and O(k + N) spa
e. The development of ageodesi
 Voronoi diagram for line segments would almost 
ertainly improve this runtime. Referen
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