GEODESIC FRECHET AND HAUSDORFF DISTANCE INSIDE A
SIMPLE POLYGON
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ABsTRACT. We unveil an alluring alternative to parametric search that applies
to both the non-geodesic and geodesic Fréchet optimization problems in the
plane. This randomized approach is based on a variant of red-blue intersections
and is appealing due to its elegance and practical efficiency when compared to
parametric search.

The frontiers of knowledge are expanded by our debut of the first algo-
rithm for the geodesic Fréchet decision problem between two polygonal curves
A and B inside a simple bounding polygon P. The geodesic decision prob-
lem is asymptotically almost as fast as its non-geodesic sibling and requires
O(N?2logk) time and O(k + N) space after O(k) preprocessing, where N is
the larger of the complexities of A and B and k is the complexity of P. The
culmination of our work is a randomized solution to the geodesic Fréchet op-
timization problem that runs in O(k 4+ (N2 log kN)log N) expected time and
O(k+ N2) space. This run time is within a logarithmic factor of being asymp-
totically equivalent to the run time of the non-geodesic Fréchet optimization
problem [3].

The algorithm for the geodesic Fréchet decision problem rests on a foun-
dation of several key properties. We prove that a geodesic cell for polygonal
curves inside a simple polygon P has at most one free region and that this
region is monotone. This allows reachability information to be propagated
through a cell in constant time once its boundaries are known. We also show
how to compute a cell’s boundaries in O(log k) time after preprocessing P in
O(k) time and space.

Other interesting and related results are that the geodesic Hausdorff dis-
tance between point sets inside a simple polygon P can be computed in
O((k + N)log(k + N)) time and O(k + N) space. The approach relies on geo-
desic Voronoi diagrams and geodesic distance queries inside P. The geodesic
Hausdorff distance for line segments inside P can be found in O(k + N2 log k)
time and O(k 4+ N) space.

1. INTRODUCTION

This section reviews the approach commonly used to compute the non-geodesic
Fréchet distance, discusses related work, and outlines the rest of the paper. This
information serves as essential background for computing the geodesic Fréchet dis-
tance.

1.1. Fréchet distance background. The Fréchet distance is a similarity metric
that returns a value indicating how similar two curves are to each other. Applica-
tions of the Fréchet distance include map matching [20] and shape similarity.

The Fréchet distance is commonly illustrated by a person walking a dog on a
leash [3]. The person walks forward on one curve, and the dog walks forward on the
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FI1Gure 1. Two polygonal curves (a) are mapped onto the axes of
a two-dimensional graph (b). For polygonal curves, the graph is
subdivided into cells based on the positions of the curve vertices

(c).

other curve. As the person and dog move along their respective curves, a leash is
maintained to keep track of the separation between them. The maximum separation
attained during the walk defines the required length of the leash.

The Fréchet distance is the length of the shortest leash that makes it possible
for the person and dog to walk from beginning to end on their respective curves
without breaking the leash. The leash’s length is a measure of how similar the two
curves are to each other. Short leashes mean the curves are similar; long leashes
mean the curves are different. See section 2.2 for a formal definition of the Fréchet
distance.

To compute the Fréchet distance, a way of representing all possible person and
dog walks is needed. Alt and Godau’s standard representation [3] maps the two
curves (e.g., Figure 1a) onto the axes of a two-dimensional graph (e.g., Figure 1b).
Parametrizing these curves into the range [0, 1] forces the graph to be defined in
a unit square. For polygonal curves, the graph is partitioned into cells by cutting
the graph at every position where a curve has a vertex. This partitioned graph is
called the free space diagram and is illustrated in Figure 1lc.

The free space diagram represents all possible person and dog walks along their
respective curves. At the beginning of the walk, the person and dog are positioned
at the start of their curves. This position occurs at the bottom-left corner of the
free space diagram. At the end of the walk, the person and dog are positioned at
the end of their curves, and this occurs at the upper-right corner of the free space
diagram. All walks relevant to the Fréchet distance are paths in the free space
diagram from the bottom-left corner to the upper-right corner. If the person and
dog are only allowed to move forward on their curves (i.e., not backward), then
only monotone paths in the free space diagram should be considered.

The free space diagram provides a means of solving a subproblem of the Fréchet
distance called the decision problem. The decision problem assumes a leash of
length ¢ is given. True is returned if a leash of length ¢ is long enough to permit a
monotone person and dog walk from start to finish. Otherwise, false is returned.
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Notice that any point (p,d) in the free space diagram is associated with a point
p on the person curve and a point d on the dog curve. Consequently, the point
(p,d) can be mapped to the distance d(p,d) between p and d, where this distance
must be either < e or > «.

To solve the decision problem, distances in the free space diagram are categorized.
Free space consists of all points (p,d) in the free space diagram with d(p,d) < e.
Intuitively, points in the free space are associated with positions during the walk
where the person and dog are close together. Constrained space consists of all points
in the free space diagram with d(p,d) > . Intuitively, points in the constrained
space are associated with positions during the walk where the person and dog are
far apart.

The Fréchet decision problem returns true only when a path exists that satisfies
two conditions. First, the path must be monotone and travel from the bottom-left
corner to the the upper-right corner of the free space diagram. Second, the path
must only travel through free space. We decide if such a path exists (for polygonal
curves) by subdividing the free space diagram into cells and computing each cell’s
free space. Dynamic programming is used to propagate reachability information on
a cell-by-cell basis.

After solving the decision problem, the idea of binary search allows converging
to the shortest leash length ex such that the decision problem is still true. This
length ex is the Fréchet distance and is the solution to the Fréchet optimization
problem. To guarantee converging to the exact value of ex in a continuous domain,
parametric search (see [2] and [3]) is often used in lieu of binary search.

1.2. Related Work. Most previous work assumes an obstacle-free environment
where the leash connecting the person to the dog has its length defined by an L,
metric. In [3] the Fréchet distance between polygonal curves A and B is computed
in arbitrary dimensions for obstacle-free environments in O(N? log N) time, where
N is the larger of the complexities of A and B. Variations of the Fréchet distance
have allowed the curves to be simple polygons [7] or piecewise smooth [18] instead of
polygonal. Fréchet distance has also been used successfully in the practical domain
of map matching [20]. All these works assume a leash length that is defined by an
L, metric.

This paper’s contribution is to measure the leash length by its geodesic distance
inside a simple polygon P (instead of by its L, distance). To our knowledge, there
are only two other works that employ such a leash. One is a workshop article [15]
that computes the Fréchet distance for polygonal curves A and B on the surface of
a convex polyhedron, but their method requires O(N3k*log(kN)) time. The other
paper [9] applies the Fréchet distance to morphing by considering the polygonal
curves A and B to be obstacles that the leash must go around. Their method works
in O(N? log? N) time but only applies when A and B both lie on the boundary of
the simple polygon P. Our work can handle both this case and more general cases.
We counsider P as the only obstacle, and the curves are allowed to occur at arbitrary
positions inside P.

1.3. Outline. A core idea of this paper is that the free space in a geodesic cell is
monotone. We show how to quickly compute a cell boundary and how to propagate
reachability through a cell in constant time. This is sufficient to solve the geodesic
Fréchet decision problem. To solve the geodesic Fréchet optimization problem, we
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replace the standard parametric search approach by a novel and asymptotically
faster (in the expected case) randomized algorithm that is based on red-blue inter-
section counting. It is notable that the randomized algorithm also applies to the
non-geodesic Fréchet optimization problem in the plane.

In section 2, the hourglasses and funnels of Guibas et al. [10] are discussed.
These structures represent shortest paths inside a simple polygon and are used to
prove that any horizontal or vertical line segment in a geodesic cell has at most one
connected set of free space values. We also show how to count and report certain
types of red-blue intersections. Section 3 extends the results on hourglasses and
funnels to prove that a geodesic cell has at most one free region. This region must
be monotone, and reachability information can be propagated through this region
in constant time once the cell boundaries are known.

Section 4 shows how to compute the boundaries of a geodesic cell, the geodesic
Fréchet decision problem and the geodesic Fréchet optimization problem. The deci-
sion problem can be solved in O(N? log k) time after preprocessing. The main result
of this paper is that the geodesic Fréchet distance between two polygonal curves
inside a simple bounding polygon can be computed in O(k + (N?logkN)log N)
expected time and O(k + N3log kN) worst-case time, where N is the larger of the
complexities of A and B and k is the complexity of the simple polygon. This ex-
pected run time is almost a quadratic factor in k faster than the straightforward
approach, similar to [9], of partitioning each cell into O(k?) subcells. Briefly, these
subcells are simple combinatorial regions based on pairs of hourglass intervals. Sec-
tion 5 shows how to compute the geodesic Hausdorff distance for sets of points or
sets of line segments inside a simple polygon.

2. PRELIMINARIES

To compute the geodesic Fréchet distance for two polygonal curves A and B
inside a simple polygon P, a few concepts need to be defined. Sections 2.1 and 2.2
introduce notation and definitions. In section 2.3, the hourglasses and funnels of
[10] are described. Sections 2.4 and 2.5 show that funnels have a simple structure.
Section 2.6 introduces a distance function for an hourglass that also has a simple
structure. Section 2.7 shows how to perform red-blue intersection counting and re-
porting. Such intersections are theoretically interesting and will also have practical
implications for solving the geodesic Fréchet optimization problem.

2.1. Notation. Let k be the complexity of a simple polygon P that contains the
polygonal curves A and B in its interior. A geodesic is a path that avoids all
obstacles and cannot be shortened by slight perturbations [16]. Let 7(a,b) denote
the geodesic inside P between two points a and b. The geodesic distance d(a,b)
is the length of a shortest path between a and b that avoids all obstacles, where
length is measured by Loy distance.

Let |, T, and |T denote decreasing, increasing, and decreasing then increasing
functions, respectively. For example, “H is |T-bitone” means that H is a bitone
function that is first monotone decreasing then monotone increasing.

2.2. Definitions. The Fréchet distance is formally defined as

5p(A,B)=  inf d( A(f(t)), Blg(t
FAB)= it s dCAG®), o)
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FIGURE 2. a) An open hourglass with marked hourglass vertices,
b) a closed hourglass, and c) an intersecting hourglass.

where f and g range over continuous non-decreasing reparametrizations. Intuitively,
a free space cell C is defined by two line segments ab € A and cd € B. More formally,
suppose the polygonal curves are defined as A : [0,m] — V and B : [0,n] — V|,
where V is a Euclidean vector space in the plane and m and n are, respectively,
the number of line segments defining A and B. Cell C;; = [i — 1,4] x [j — 1, j] for
1<i<mand1l<j<n (see [3]).

2.3. Funnels and Hourglasses. All geodesics in a free space cell C' can be de-
scribed by either the funnel or hourglass structure of [10]. A funnel describes all
shortest paths between a point and a line segment, so it represents a horizontal (or
vertical) line segment in a free space cell. An hourglass describes all shortest paths
between two line segments and represents an entire free space cell.

Let the funnel F, -5 represent all shortest paths between an apex point p and a
line segment cd. F, ; is the region bounded by the line segment cd and the shortest
path chains 7(p, c) and m(p,d). That is, 7 = =cd U m(p,c) Un(p,d). The shortest
path chains 7(p,c) and 7(p,d) are “outward convex” by [10]; in other words, the
convex hulls of 7(p, c) and 7(p, d) lie outside F, .

There are three types of hourglasses: open, closed, and intersecting. An open
hourglass is defined by non-crossing ab and cd and two disjoint shortest path chains
m(a,c) and 7(b,d). A closed hourglass is an open hourglass but with a collapsed
interior: m(a,c) and (b, d) share a common polygonal path that is traversed by all
shortest paths between ab and cd. An intersecting hourglass is defined when ab and
cd cross and defines four shortest path chains 7(a,c), 7(a,d), 7(b,c), and 7 (b, d).
Open, closed, and intersecting hourglasses are illustrated in Figures 2a, 2b, and 2c.

In general, any type of hourglass H@a can be represented as the region bounded
by shortest path chains and line segments. That is, Hg; 7 = 7(a,c) Un(a,d) U
7(b,c) Un(b,d)UabU cd.

We have seen that any geodesic cell C' can be described by either an open hour-
glass, a closed hourglass, or an intersecting hourglass. All three of these structures
have O(k) vertices, where k is the complexity of the simple polygon P. This fol-
lows because all shortest paths (e.g., 7(a, ¢)) inside a simple polygon P are acyclic,
polygonal, and only have corners at vertices of P [12].

2.4. Intervals. Any geodesic 7(p,q) in P between a fixed point p and any point
q € cd can be described by a funnel F = with outward convex chains m(p,c),
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FIGURE 3. A funnel can be partitioned into O(k) intervals such
that chain vertex j defines interval I;.

d(p.cd )

FIGURE 4. The geodesic distance function F, - is piecewise hy-
perbolic.

m(p,d). By extending all line segments on these polygonal chains into lines and
intersecting these lines with cd, a partition of cd into O(k) intervals I, Is, ..., Ig is
obtained. Shortest paths from p to any point ¢ € I; are combinatorially the same
for 1 < j < R. See Figure 3.

All shortest paths from p to any point g € I; are polygonal and have the form
D, Diy Dit1,--s J» q Where p;, ..., j are the funnel chain vertices that the path visits.
Let L be the length of the path p, p;, pi+1,..., j. The length of a shortest path
from p to g is L + d(j,q), where d(j,q) is equal to the Lo distance between j and
q. Varying ¢ along I; yields the distance function d(j,I;) + L. This function is a
hyperbolic arc «; since d(j, I;) equals the Lo distance from a point to a line segment
and L is a constant. o; achieves its minimum distance at either an endpoint of I;
or the perpendicular from j to I;.

Since d(p, I;) is a hyperbolic arc, the distance function F, from p to the entire

line segment cd is piecewise hyperbolic. In section 2.5 we will see that F, s
bitone, so at most one of the hyperbolic arcs is bitone; all other arcs are monotone.

2.5. Funnel Bitonicity. Any horizontal (or vertical) line segment inside a geo-
desic free space cell has a distance function F, - : [e,d] — R with F, —(a) =
d(p, q). In section 2.4, we saw that Fp -4 1s piecewise hyperbolic, and this behavior

is illustrated in Figure 4.

Lemma 1. Fp) = s |1-bitone.

Proof. Without loss of generality, assume that cd is vertical. If we examine the
slopes of the line segments defining the funnel chains in order from ¢ to p along
(¢, p) and continuing from p to d along 7(p, d), we see that the sequence of these
slopes is monotone. The two chains separately have monotone slopes due to their
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FIGURE 5. F =4 is | 1-bitone because at most one interval I, can
be bitone. Dotted line segments are perpendiculars from each chain
vertex to cd.

convexity. The slopes where the two chains meet at apex p are also monotone since
the two chains never cross each other.

Partition cd into O(k) intervals I1, Ia,..., I as in section 2.4. Each interval I;
for 1 < j < R is defined by two rays R;_1 and R; that originate at chain vertex j
and intersect cd. Let a; € F, - be the hyperbolic arc for I;.

oy is bitone if and only if the perpendicular L; from j to the line ¢ supporting
cd lies strictly in the interior of I,,. Otherwise, o is monotone. Let the slope of
L ; be p, and note that 4 is constant over all chain vertices. Since I; is defined by
two rays R;_1, R; from j to ¢, L; will only intersect ¢ in I; when the slope p lies
between the slopes of R;_; and R;. Since the ray slopes are monotone through the
intervals I g, at most one bitone arc a,, for 1 < v < R exists. Hence, at most one
arc of F/| — is bitone; the rest are monotone.

Suppose 1, lies in the interior of I, so that «, is |T-bitone. By the mono-
tonicity of the rays defining the intervals, oy (,—1) is |-monotone and a(,41)...r is
T-monotone. If L, lies on the common boundary of 1,1 and I, then a; (1) is
|-monotone and «,,. g is T-monotone. Hence, F, s 1T-bitone. See Figure 5.

O

Corollary 1. Any horizontal (or vertical) line segment in a free space cell has at
most one connected set of free space values.

Proof. A horizontal (or vertical) line segment in a geodesic free space cell has a
distance function F —;- Free space consists of all values less than or equal to a
given distance €. Slnée Lemma 1 ensures that F =4 is | 1-bitone, F =4 has at most
one connected set of free space values.

O

2.6. Hourglass Bitonicity. This section introduces a | T-bitone distance function
Hz =5 for the hourglass He ;. Hg -z will be useful in section 3.1 for analyzing
the structure of a geodesic free space cell.

Consider the hourglass H; —;. Let the shortest distance from a to any point on
cd occur at the point M, € cd. Define M, similarly. -

As p is varied from a to b, the minimum distance from p to cd traces out a
function Hg;  : [a,b] — R with Hgg (p) = minge(. 4 d(p, g). See Figure 6.
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FIGURE 6. The shortest distance from p to any point on cd defines

Hy 3rar, as p is varied from a to b.

Lemma 2. Hg - is 1T-bitone.

Proof. By optimal substructure, shortest paths from p to cd will not cross as p is
varied from a to b, so Hfb g and H_; ab, ML, Are identical functions. The task is to
show that Hoy w37 1s LT bitone regardless of whether the hourglass Hg; 3737 1s
open, closed, or intersecting (cf. section 2.3).

Suppose that Hz; 7777 1s an open hourglass. Without loss of generality, assume

that MM, is vertical. Let p—r be the slope of ab. Let S, and S; be the points

where horizontals from M, and M, intersect ab. S, and S}, will exist for any open
hourglass Hz; 5737, where M, # M, because the position of the minimal distance

from p to cd always occurs at either ¢, d, or a perpendicular to the interior of cd
by [16].!

H%, Ar, 7, can be split into three parts: two funnels Fasy. M, fSTb, g, and an
Lo-section L that lies in-between the two funnels®. Let Fre a0, M, P55, ar, and FL
denote distance functions for these three structures so that Hab7 a7, a5, has the form
Fogr m, 0 FrLo FSTb, A, » Where o denotes concatenation.

At most one bitone arc ., defines Hgp 5757 (cf. section 2.5).3 This follows
from the proof of Lemma 1 because the line segment slopes on the chains form
a monotone sequence from a to M, along 7(a, M,) and continuing from M, to b
along m(Mp, b).

If o, €Fz y,, as illustrated in Figure 7a, then clearly the slope pzz < 0, so
FF a, 18 L1- bitone and Fr, and Fsbb M, Are T-monotone. When «,, erbb M,y
Figure 7b shows that pzz > 0, so both Fig- ), and Fj are |-monotone and
FSTb M, 18 11- bitone.* If a, is part of F, then ab and cd are parallel, so Foso o,
is |-monotone, F, is constant, and Fgy ,, is T-monotone (see Figure 7c). Hence,

Hz; =7 is always | T-bitone for any open hourglass.

Suppose that H; 577 is a closed hourglass. All shortest paths from p € ab to

cd will end at the same point M, as shown in Figure 8a. Hence, Hy 3135 equals
Fg pp, andis |T-bitone by Lemma 1.

a
When Hz; 5777 is an intersecting hourglass, ab and cd will cross at the point
¢ as illustrated in Figure 8b. H; 77 has the form Hy g oHy 37, where

It M, = My, then Hab Mo, is trivially |T-bitone because it equals Fab M,

2Notice that the funnel ]:as M, Uses the second subscript for the apex. This emphasizes
that the apex occurs on cd 1nstead of on ab.

3If no bitone arc helps define Hab ML then clearly HE T, is monotone.

4f pi— = 0, then My = My, and H—;

b, °d is |T-bitone because it equals Fab M,
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FIGURE 7. An open hourglass Hzp. 3735, has at most one bitone
arc a,. Regardless of the position of «,, H; —;is |-monotone for
all arcs from a to «a, and T-monotone for all arcs from «, to b as
indicated by the arrows in the diagrams. F g- ,, and Fgy
are lightly shaded; L is heavily shaded.

D

FIGURE 8. a) A closed hourglass always has M, = M,. b) An
intersecting hourglass can be split into two (shaded) open hour-
glasses.

Ho, 77 and Hy 37 are distance functions for open hourglasses. By the above
arguments on open hourglasses, H_; 37— and Hy 37 are each (at-worst) | T-bitone.
Consider varying p from a to ¢. d(a, M,) is positive and d(¢,¢) = 0. Hence, Hy 3
is actually |-monotone. Varying p from ¢ to b is similar: d(¢,¢) = 0 and d(b, M) is
positive, so Hy 77 is [-monotone. Therefore, H; - is |T-bitone.

O

2.7. Red-Blue Intersections. This section shows how to efficiently count and
report a certain type of red-blue intersections in the plane in an arbitrary interval
a < x < . This problem is interesting both from theoretical and applied stances
and will prove useful in section 4.3.1 for the Fréchet optimization problem.

Let R = {ri(x),r2(x),...,rm(x)} be a set of m “red” curves in the plane such
that each red curve is monotone decreasing and has O(k) complexity. Let B =
{b1(x),b2(x),....,bn(x)} be a set of n “blue” curves in the plane where each blue
curve is monotone increasing and has O(k) complexity. Let V (k) be the time to
compute the value of any red or blue curve at a given x-position.

Let I(k) be the time to find the intersection of any r;(z) and b;(x). Observe
that any monotone decreasing curve r;(x) € R intersects a monotone increasing
curve b;j(z) € B in at most one contiguous sequence of points (as a consequence
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FIGURE 9. Intersection counting calculates that r3(z) intersects
two blue curves for x > « but only intersects one blue curve for
x > (. Subtracting these quantities and accounting for =z = 3
intersections reveals that r5(x) must have one intersection in the
interval a < z < 3.

of the monotonicities). For counting purposes, this sequence is considered to be a
single intersection.

A few assumptions are required for the below counting and reporting algorithms.
All red and blue curves should have values within an arbitrary range ymim < y <
Ymax Such that min(r;(x)) = ymin for all 1 < ¢ < m and max(b;(r)) = Ymax for
all 1 < j < n. In addition, the (open) interval « < z < ( must contain no left
endpoint of any red or blue curve.

Theorem 1. The number of intersections in the interval o < x < 3 between every
red curve r;(x) € R and all bj(z) € B can be counted in O(N(V (k) +log N)) total
time, where N = max(m,n).

Proof. A key idea is that if 7;(p) > b;(p) at « = p, then the curves r;(x) and b;(z)
will intersect for some x > p. This follows because min(r;(z)) <max(b;(z)).

Intersections in the interval a < x < g can be counted by taking “snapshots” of
the curve positions at the endpoints « and 5. The a-snapshot is found by computing
the values of all red and blue curves at « in O(N * V(k)) time and sorting these
values to create the list L, in O(NN log V) time. The list L can be found similarly
in O(N(V (k) +1log N)) additional time.

If a curve is defined entirely outside the interval o < x < (3, then it can be safely
ignored. If a curve’s right endpoint lies strictly inside the interval, then this right
endpoint can conceptually be extended horizontally to 5. This extension will only
create false red-blue intersections when the left endpoint of a b;(x) curve appears
at © = [ such that b;(8) =ymax, and this special case can easily be handled without
increasing the time bounds.

For counting queries, the sorted list L, is preprocessed in O(N) time by one
linear scan over L,. For each r;(«) € Lg, let 7;(a)->n be the number of b;(«)
such that r;(«) > b;(«). Define r;(3)->n similarly. In essence, each red curve r;(x)
keeps track of how many blue curves b;(x) lie below it because these curves will
intersect for some x > «. Preprocessing Lg yields red-blue intersections for « > (.
For counting purposes, the number of > « intersections minus the number of
x > (0 intersections yields the number of intersections in a@ < x < (. Since it is a
simple matter to compute the intersections at = (3 from the sorted list Lg, all
intersections of r;(x) with B for « < z < (3 can be counted in O(N (V (k) + log N))
time. See Figure 9.

O
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Step Current Curve  Action Tr
1 r3(x) Insert 2 @
2 B (x) Query 5:13(x) intersectsb,(x).

3 r2(X) Insert 4 (3)

4 r1(x) Insert 3 e @

5 b1 (x) Query 1: No new intersections.

FiGURE 10. In the situation depicted by Figure 9, intersection
reporting finds that r3(z) intersects ba(z) in the interval @ < z < .

Theorem 2. The intersections in the interval o < x < 3 between every red curve
ri(z) € R and all bj(xz) € B can be reported in O(N(V (k) +log N + I(k)) + K)
total time, where K is the total number of intersections reported.

Proof. The goal is to compute for every r;(x) alist of all b, (x) such that r;(z)Nb; ()
for a <z < (. Testing if two curves are equal at z = « or x = ( is straightforward,
so we do not mention this case further. An intersection occurs for o < x < (3 exactly
when r;(a) > b;(a) and 7;(8) < b;(3) are both true. Intuitively, the first condition
means that r;(z) must intersect b;(x) for some z > «. The second condition means
that there is no intersection for x > 8. This implies that r;(z)Nb;(z) for a < x < .

The sorted lists L,, Lg are together sufficient to report all red-blue intersec-
tion pairs. To extract these pairs efficiently, a balanced binary search tree Tg is
incrementally constructed from red curve indices. Each blue curve is handled by
querying Trg.

Let Ig(r;(x)) denote the index of r;(z) in the list L. Similarly define Ig(b;(z)).
Begin with T = @. March through L, in decreasing order (i.e., top-to-bottom
in Figure 9). Process each r;(x) by inserting Ig(r;(z)) into Tg in O(log N) time.
For each b;(z), query Tg with Ig(b;(z)). All r;(z) with indices in T less than this
query index will intersect b;(x). See Figure 10.

O

3. GEODESIC CELL PROPERTIES

All results in this section are for polygonal curves inside a simple polygon. In
section 3.1, we show that a geodesic free space cell has at most one free region
and that this region is monotone. Section 3.2 extends this result to show that
reachability can be propagated through a cell in constant time once its boundaries
are known.

3.1. Cell Free Space. Consider a geodesic free space cell C for polygonal curves
A and B inside a simple polygon. The goal of this section is to show that C has at
most one free region and that this region is x and y monotone.
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__Recall that a free space cell C' is defined by two line segments: ab € A and
cd € B. A horizontal (or vertical) line segment in C' has a distance function F, —

between a fixed point p € ab and the line segment cd.

Lemma 3. For any €, C has at most one free space region R. R must be monotone
and connected.

Proof. A simple polygon is z-monotone if any vertical line intersects it in at most
one connected interval. A polygon is y-monotone if any horizontal line intersects
it in at most one connected interval. By Corollary 1, any free space region R in
C must be x and y monotone. Next, it is proven that all free space points are
connected so that C' has at most one free space region.

Let € > 0 be given. Take any two points (p1,q1), (p2,g2) in the free space, i.e.,
d(p1,q1) < e and d(p2,q2) < e. We need to show that they are connected in the
free space. For this, first move vertically from (p1,¢1) to the minimum point on its
vertical. Do the same for (po, ¢2). By Lemma 1, this movement causes the distance
to decrease monotonically. By Lemma 2, any two minimum points are connected
by a |T-bitone distance function HE, —; (cf. section 2.6), but as the starting points
are < ¢ all points on this constructed path are < e.

O

3.2. Cell Reachability. This section proves that given C’s boundaries, it is pos-
sible to propagate reachability information through C in constant time. In other
words, the space inside C’s boundaries is not required to compute the Fréchet
distance.

Reachability information is crucial to solving the Fréchet decision problem. Re-
call from section 1 that in order to solve the Fréchet decision problem we need to
know if a monotone path exists through the free space diagram from the bottom-left
corner to the upper-right corner. Reachability information is a way of locally encod-
ing on a cell-by-cell basis those free space points that are reachable by a monotone
path from the bottom-left corner of the free space diagram. Let Cr, Cr, Cgr, Cp
be the left, top, right, and bottom boundaries of C', respectively.

Lemma 4. Given the reachable points for Cr, and Cp plus the free space points on
Cr and Cr, reachability information can be propagated to Cr and Cr in constant
time.

Proof. Lemma 1 ensures that C;, and Cp each have at most one connected set of
reachable points. If some point p € (' is reachable, then all free space on Cr is
reachable. This is true because C’s free region R is both connected and monotone.
Consequently, there must be some path 7(p,{) from p € Cp, to Cpr’s leftmost free
space point [. 7(p,l) is monotone because one can follow the monotone free space
boundary between these two points. Symmetrically, if any point on Cp is reachable,
then all free space on Cp is reachable. See Figure 11a.

If no point on C7, is reachable, then the only possible monotone path to C'r must
originate at C'p. Imagine shooting a vertical ray V upward from Cp’s leftmost
reachable point. Let V intersect Cr at the point ¢. If ¢ is a free space point,
then ¢ is the leftmost reachable point on Cr, and all free space on Cr to the right
of ¢ is reachable. If ¢ is a constrained space point, then Cp’s free interval either
lies completely left of ¢ or completely right of q. The former case is completely
unreachable from Cp. The latter case is completely reachable since one can follow
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FIGURE 11. Propagating reachability information through cell C
takes constant time once C’s boundaries are known.

V until it hits constrained space and then follow the monotone free space boundary
to the leftmost free space point on C'r. Propagating reachability from Cp, to Cg is
a symmetric case. See Figures 11b and 11c.

O

4. GEODESIC FRECHET ALGORITHM

The goal of this section is to compute the exact geodesic Fréchet distance dp
between two polygonal curves inside a simple polygon. Section 4.1 shows how to
compute one cell’s boundaries in O(log k) time, and section 4.2 uses this result to
solve the geodesic Fréchet decision problem. Sections 4.3, 4.4, and 4.5 use the deci-
sion problem and red-blue intersection counting to solve the Fréchet optimization
problem. This approach is novel in that it is a practical alternative to parametric
search for both the geodesic and non-geodesic Fréchet optimization problems in the
plane.

4.1. Computing one cell’s boundaries in O(logk) time. A cell boundary is
a horizontal (or vertical) line segment in a free space cell. This boundary can be
associated with a funnel fp,@ with a distance function Fp7 —; that is | T-bitone (cf.
Lemma 1). Given ¢ > 0, computing the free space on a cell boundary requires
finding the (at most two) intersections ¢, > of F,, -z and y =e.

F, oois defined by O(k) arcs . g as shown in section 2.4. Any arc «; for
1 < j < R is defined by both a point and a line segment. The point is a chain
vertex j €m(p, c)Un(p,d) (excluding endpoints ¢, d). The line segment is an interval
I; € cd. a; can be computed in constant time once j and I; are known because o
represents the Ly distance between the point j and the line segment I;. See Figure
12a.

Suppose the chains 7(p,c) and 7(p,d) are known. A straightforward way to
compute the free space on a cell boundary is to sequentially compute all of the arcs
aq...r as follows. For each chain vertex j, compute I; by extending the two chain
line segments adjacent to j into lines and intersecting them with cd. «; can then
easily be constructed from j and I;. Repeating this process for all chain vertices
suffices to construct a;. p in O(k) time. See Figure 12b. Ounce all the arcs are
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Free Spad

FIGURE 12. a) A funnel F,, za is associated with a cell boundary.
b) The arcs ;.. g define Fp7 =+ ¢) Once the (at most two) inter-
sections ty, tg of Fp1 —; with the line y = € have been found, the
free space on a cell boundary is immediately known.

known, each arc can be intersected with the line y = € in constant time. These
intersections are sufficient to define the free space on a cell boundary as illustrated
in Figure 12c.

To improve the run time of the above approach from O(k) to O(logk) time,
realize that it is not necessary to explicitly construct all of the arcs of F, @ The
arcs themselves are unimportant. Only the intersections ¢; and ¢y of ;. g with
y = ¢ are required, and a binary search can find these intersections by examining
only O(log k) arcs. To perform this search, the chains 7(p, ¢) and 7(p,d) must be
available in O(log k) time, and the chain data structure must support logarithmic
searches over the chain vertices.

The chains 7(p,c) and m(p,d) can be constructed in O(log k) time (after O(k)
preprocessing) by the algorithms of Guibas and Hershberger [11], [13]. These algo-
rithms represent a chain by a binary search tree 7 with O(log k) height.

Even though 7 can have O(k) complexity, it can be constructed in only O(log k)
time through clever use of preprocessing structures [11]. A critical property shown
in [13, p. 232] is that two adjacent trees of height h(7;) and h(73) can be concate-
nated (i.e., merged) into a new tree with height h(73) < max(h(71), h(72)) + 1.
The preprocessing step of [11] triangulates the simple polygon P and computes
constant-size trees for each triangle. These trees are repeatedly merged in bottom-
up fashion to create a “balanced hierarchical decomposition” of P [11]. Each of
these precomputed trees is the result of O(log k) merge operations, so the height of
any precomputed tree is O(log k) .

Queries are handled by concatenating at most a logarithmic number of precom-
puted trees together [11, p. 56]. Since each concatenation increases the height of
the tree by at most one, the final tree 7 will have O(log k) height. The query time
to construct 7 is O(log k) because [11, p. 61-2] ensures that during the query a
significant number of concatenations occur on trees of small height.

To find 7(p,c), perform a query on the points p and ¢. The query creates a
binary search tree 7. that represents m(p,c) in O(logk) time. The construction of
T, for 7(p,d) is similar.
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Binary searches on 7. and 73 can be performed to find the intersections t1, to
if arcs are available to guide the search. Since nodes in 7, and 7; can be directly
associated with edges but not with arcs [13, p. 233], a conversion is needed.

Converting a node into an arc is possible in constant time. An arc «,, is defined
by a chain vertex v and a line segment I, (cf. section 2.4). Let an arbitrary tree
node n represent the edge 7w, where v and w are adjacent chain vertices. To
compute I,, the two chain line segments adjacent to v must be found. Clearly, vw
is one of these edges. The other edge uv is the predecessor of Tw.

Lemma 5. For any edge vw in 7. or 1y, its predecessor uv can be found in constant
time.

Proof. To find a node’s predecessor in constant time, the algorithms of [11] and [13]
can be extended so that every node n has a pointer n, to its immediate predecessor.
To support constant time updates to n,, n also needs a pointer n; to the largest
valued node in the tree rooted at n. Adding these pointers requires modifying the
preprocessing step of [11] so that these pointers are initialized for all nodes in a
constant-sized chain. In addition to this base case, the concatenation process is
also updated.

The concatenation process merges trees 73 and 75 into 73. It creates a new root
node 7 and modifies nodes on two root-to-leaf paths: one in 7; and one in 73 [13,
p. 233-4]. Begin by updating n; for each of these nodes. n; either points to n itself
or to o7, where o is n’s right child. Each of these updates takes constant time if
performed in bottom-up fashion.

Updating n, on a root-to-leaf path should also be performed bottom-up. If an
arbitrary node n (e.g., node 4 in Figure 13) has a left child m, then n, is simply
my. If n has no left child (e.g., node 5 in Figure 13), then n,, is the first ancestor i
such that n is a right descendant of n. This ancestor can be maintained during the
traversal so that 7 is always available in constant time. If no such ancestor exists,
then n is the smallest node in the tree and correctly has no predecessor.

There are two final predecessors to update to complete the concatenation. Let r
be the new root and g be r’s left child. Also let w be the smallest node in the tree
rooted at r’s right child (e.g., node 9 in Figure 13). r, equals ¢;, and w,equals r.
All pointer updates can be performed in the O(h(77) + h(72)) time that is allowed
per concatenation [13, p. 232].

O

Lemma 6. Both the minimum value of F,, ;5 and the (at most two) intersections
t, t2 of F, o with the line y = € can be found for any ¢ > 0 in O(logk) time
(after preprocessing).

Proof. Binary searches on 7, and 7, to find ¢; and 2 can start by searching for the
bitone arc «, in both trees. «, contains the minimum value of Fp) —» and there is
at most one bitone arc in 7, U7; because the trees together represent the chains
of the funnel 7, = (cf. Lemma 1).

Following the binary search paradigm, separately traverse each tree in search of
the bitone arc o,. At the root node r use 7, to construct ¢, in constant time (cf.
Lemma 5). If . is bitone, then a,, has been found, and this step is complete. If
is T-monotone, then recurse on the left child of . Otherwise, recurse on the right
child of r.
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FicUrReE 13. Concatenation involves updating predecessors in
three locations: the new root r, the smallest valued node w in
r’s right subtree, and two (boxed) root-to-leaf paths. Although
nodes are associated with edges, they are shown with integer val-
ues to simplify the predecessor relationship that is indicated by the
arrows.

The tree that does not contain «a, has a monotone sequence of arcs. The other
tree has at most two monotone arc sequences: one on each side of «,. The in-
tersections t; and to of these monotone arc sequences with y = ¢ can be found in
logarithmic time. Simply test the endpoints of the (monotone) current arc «;, in
constant time. If the endpoints of a, define a range that contains ¢, then find the
exact intersection of a,. with y = e. Otherwise, recurse on the appropriate child of
.

O

Once the intersections ¢ and to are known, they must be mapped onto the cell
boundary. Once this mapping is known, it is trivial to define the free space for any
cell boundary.

Lemma 7. Let t be an arbitrary point on any arc o, EFp —; that is defined by the
interval I.. The position of t on the cell boundary can be found in O(1) time.

Proof. Let the endpoints of I, define the (closed) range [¢, j] on the cell boundary.
Compute the arc-length of «, from its left endpoint to ¢t and divide this value by
the total arc-length of «,.. This quotient supplies the position in the range [i, j]
where t occurs. Since all of these steps take constant time, the position of ¢ on the
cell boundary is available in constant time.

O

Corollary 2. The free space on all four boundaries of a single cell can be found in
O(logk) time.

Proof. This result follows immediately from Lemmas 6 and 7.

4.2. Geodesic Fréchet Decision Problem.

Theorem 3. After a one-time preprocessing step of O(k) time [11], the geodesic
Fréchet decision problem for polygonal curves A and B inside a simple polygon P
can be solved for any € > 0 in O(N?logk) time and O(k + N) space.
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Proof. There are O(N?) cells in the free space diagram. Compute all cell bound-
aries in O(N?logk) time (cf. Corollary 2) and propagate reachability information
through all cells in O(N?) time (cf. Lemma 4). Return true if the upper right
corner of the free space diagram is reachable. Return false otherwise.

The space bounds follow because the cells can be handled via dynamic program-
ming such that only two rows need to reside in memory at any one time. These
two rows require only O(N) storage because only O(1) space per cell is needed to
define the cell boundaries. The O(k) term comes from storing the preprocessing
structures of [11] throughout the algorithm’s execution.

O

4.3. Geodesic Fréchet Optimization Problem. Let % be the minimum value
of € such that the Fréchet decision problem returns true. That is, ex equals the
Fréchet distance dp. Parametric Search is a technique commonly used to find ex
(see [3], [19], [2], and [8]).. The typical approach to find e* is to sort all the
cell boundary functions based on the unknown parameter ex. The comparisons
performed during the sort guarantee that the result of the decision problem is
known for all “critical values” [3] that could potentially define ex.

Previous sorting algorithms have operated on cell boundaries of constant com-
plexity. The geodesic case is different because each cell boundary has O(k) com-
plexity. As a result, a straightforward parametric search based on sorting these
values would require O(kN? log kN) time even when using Cole’s [8] optimization.®

We present a randomized algorithm with expected run time O(k+(N?log kN) log N)
and worst-case run time O(k+ N3 log kN). This algorithm is an order of magnitude
faster than parametric search in the expected case. Both algorithms involve cubic
factors in the worst-case.

Each cell boundary has at most one free space interval. The upper boundary
of this interval is a function b;;(e), and the lower boundary of this interval is a
function a;;(¢). See Figure 14a.

The seminal work of Alt and Godau [3] defines three types of critical values for
the Fréchet distance. There are exactly two type (a) critical values associated with
distances between the starting points of A and B and the ending points of A and
B. Type (b) critical values occur O(N?) times when a;;(¢) = b;;(¢). See Figure
14b.

Type (a) and (b) critical values occur O(N?) times and are easily handled in
O((N?logk)log N) time. This process involves computing values in O(N?logk)
time, sorting in O(N?log N) time, and then running the decision problem O(log N)
times. Each execution of the decision problem resolves half of the remaining critical
values. Resolving the type (a) and (b) critical values as a first step will lead to an
observation that simplifies the randomized algorithm on type (c) critical values.

Alt and Godau [3] show that type (c) critical values occur when the position of
a;j(€) in cell C;; equals the position of by;(e) in cell Cy; in the free space diagram.
See Figure 14a.

5An easier to implement alternative to parametric search is to run the decision problem once
for every bit of accuracy that is desired. This approach runs in O((N? log k) B) time, where B is
the desired number of bits of accuracy [19]. This approach requires only O(k + N) space using
row-based dynamic programming for the decision problem.

6A variation of the general sorting problem called the “nuts and bolts” problem (see [14]) is
tantalizingly close to an acceptable O(N? log N) sort, but it is not solvable in the general case.
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FIGURE 14. There are O(N?) type (b) critical values and O(N?)
type (c) critical values.

As ¢ increases, Figure 14b shows that a;;(¢) is |-monotone on the cell boundary
and b;;(¢) is T-monotone. This follows from Lemma 1. As illustrated in Figure
14c, a;;(e) and by;(e) intersect at most once. This follows from the monotonicities
and piecewise hyperbolic structures of a;;(¢) and bg;(e). Hence, there are O(N?)
intersections of a;j(¢) and by;(¢) in row j and a total of O(N3) type (c) critical
values over all rows. There are also O(N?) intersections of a;;(g) and b;x(e) in
column i and a total of O(N?3) additional type (c) critical values over all columns.

Lemma 8. The intersection of a;j(e) and byi(e) can be found for any € > 0 in
O(log k) time after preprocessing.

Proof. Using the approach of section 4.1, construct the binary search trees 7, and
Ty in O(log k) time that are, respectively, associated with the monotone functions
a;j(e) and by (e). We show that a logarithmic search over 7, and 7, is sufficient to
find the intersection of a;;(¢) and by (g) or report that no intersection exists.

Start at the roots of both trees. In O(1) time build the arc o, for the current
node in 7,. Using the monotonicity of «,, construct two axis-parallel rectangles
Tal, Tq2 in constant time such that r,; U ryo contains all potential coordinates for
the other arcs in 7,. Repeat this process for ay, 51, and 7p2.

Figure 15 illustrates the general idea. In Figure 15a, it should be clear that
neither ap, nor any arc in rp can be involved in an intersection because oy U 12 is
disjoint from r,1 U ag U Tga2. Consequently, it is correct to move to the left child
of the current node in 7, and update . Figure 15b shows that in the next step,
neither a, nor any arc in 7, is involved in an intersection. Consequently, move to
the right child of the current node in 7, and update a,. The third step in Figure
15¢ shows that «; is the only arc in 7, that can intersect an arc in 7,. Continuing
the search on 7, is sufficient to find this intersection or determine that it does not
exist,.

Each iteration, an algorithm can either return the intersection of a,Nay if it
exists, report that there is no intersection, or update «a, or a; and continue with
the next iteration. We show next that at each step it is always possible to update
either oy or ayp.

Suppose that p is an endpoint of «,. Let A = ry1 U p U ree and note that
A D (ra1UaqUrge). Let B = ry; Uy Urpe for an arbitrary «y,. Several observations
follow directly from the monotonicities of a;;(¢) and bg; (). If p is disjoint from 5,
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F1GURE 15. Example steps to find the intersection of a;;(¢) and by (e).

FIGURE 16. Intersecting a;;(¢) and by(¢) takes O(logk) time.
Arcs that can be safely discarded are crossed out.

then B can intersect at most one of 7,1, r42. Hence, either p U r,; or p U r,o can
be discarded (see Figure 16a). Similarly, if p lies strictly in the interior of 41 Urpe,
then either ap U rp1 or ap U rye can be discarded (see Figure 16b). When p lies
precisely on the boundary of 7,1 or rp2, then it is possible for B to intersect rq1, p,
and 7,2 (see Figure 16¢). However, since endpoints are shared by adjacent arcs, it
is permissible to discard either pUr,1 or pUr.o and also either ap Urp; or ap Urpo.
Hence, at each step it is always possible to update either «, or ay.

The run time follows because each step performs constant work on four rectangles
and two arcs to determine how to update the arcs for the next step. Since the trees
7. and 7, have O(log k) height, the total number of steps is O(log k). Hence, an
algorithm can find the intersection of a;;(¢) and by;(e) (or determine that no such
intersection exists) in O(log k) time.

O

The below observations imply that Theorems 1 and 2 can be applied to count
and report the number of type (c¢) critical values in the closed interval [, 5].

Observation 1. Precomputing the type (a) and type (b) critical values of [3] shrinks
the (closed) interval [cv, B] containing ex such that no new a;;(€), bri(e) appear in
the open interval (o, ) when processing the type (c) critical values.

Observation 2. All a;;(¢) have minimum values at the bottom of the cell bound-
ary. All bij(e) have mazimum values at the top of the cell boundary. That is,
min(a;;(e)) = 0.0 and max(b;;(¢)) = 1.0 for all 1 <4, j < N.
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4.3.1. Randomized Algorithm. The below randomized algorithm solves the geodesic
Fréchet optimization problem. This algorithm is asymptotically faster than para-
metric search by an order of magnitude in the expected case and shares a cubic run
time with parametric search in the worst-case.

(1) Precompute and sort all type (a) and type (b) critical values in O(N? log kN)
time (cf. Lemma 6). Run the decision problem O(log N) times to resolve
these values and shrink the e* interval down to [, 8] in O((N?log k) log N)
time.

(2) Let j represent an arbitrary row in the free space diagram. Count the
number x; of type (c) critical values for each row j in the interval [«, 0]
using Theorem 1. Intersection counting requires O(N log kN) time per row
for a total of O(N?log kN) time for all rows. Let C; be the counting data
structure for row j.

(3) To achieve a fast ezpected run time, use Quicksort’s paradigm to pick a
random intersection for each row.” To find a random intersection for row
J, pick a random number between 1 and ;. Since every a;;(¢) €C; stores
the number of intersections in which it is involved, a search through C; can
determine the particular ag;(e) that is involved in the randomly selected
intersection. Once ag;(e) is known, its O(NN) intersections in [a, 5] can be
determined in O(N log k) time by testing all by;(g) that lie below ag;(e) in
Cy’s list Ly (cf. Lemma 8). The randomly selected intersection ¢, is then
immediately available and can be stored for later use.®

(4) To achieve a fast worst-case run time, also pick the aas;(e) in each row
that has the most intersections. Add all intersections in [«, 3] that involve
anr;(€) to a global pool P of unresolved critical values” and delete apy;(¢)
from any future consideration. If desired, the intersections for the randomly
selected ag;(e) can also be added to P.

(5) O(N?) values are added to P each step after finding O(N) intersections for
each row. Sort all values in P, and find the median = of these values. Also
find the median ¥ of the O(N) randomly selected ¥; in O(N) time using
the standard median algorithm mentioned in [14].

(6) Run the decision problem twice: once on =Z; once on ¥. This shrinks the
interval [a, O] and halves the size of P. Repeat steps 2 through 6 until all
row-based type (c) critical values have been resolved.

(7) Resolve all column-based type (c) critical values in the same spirit as steps
2 through 6.

(8) Return the smallest critical value that satisfies the decision problem (i.e.,
ex) as the value of the geodesic Fréchet distance.

4.4. Geodesic Fréchet Distance Run Time.

Theorem 4. The exact geodesic Fréchet distance between two polygonal curves A
and B inside a simple bounding polygon P can be computed in O(k+(N?logkN)log N)

7Picking a critical value at random is related to the distance selection problem [6] and is
mentioned in [1], but to our knowledge, this alternative to parametric search has never been
applied to the Fréchet distance.

8In practice, the median of the intersections is a better choice for ;.

9The idea of a global pool is similar to Cole’s optimization for parametric search (8]



GEODESIC FRECHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 21

expected time and O(k + N3log kN) worst-case time, where N is the larger of the
complezities of A and B and k is the complezity of P. O(k+ N?) space is required.

Proof. Preprocess P once for shortest path queries in O(k) time [11]. In the average
case, each execution of the decision problem will essentially cut the total number of
unresolved type (c) critical values in half. This follows from the well-known proof
of Quicksort’s expected run time. Consequently, the expected number of iterations
of the algorithm is O(log N?) = O(log ).

In the worst-case, each of the O(N) a;;(¢) in a row will be picked as aps;(e).
Therefore, each row can require at most O(N) iterations. Since all rows are pro-
cessed each iteration, the entire algorithm requires at most O(N) iterations for
row-based critical values. By a similar argument, column-based critical values also
require at most O(NV) iterations.

2

The size of the pool P is expressed by the recurrence S(x) = w,
where z is the current step number, and S(0) = 0. Intuitively, each steps adds
O(N?) values to P and then half the values in P are always resolved. It is not
difficult to see that S(x) € O(N?) for any step number z.

Each iteration of the algorithm requires intersection counting and intersection
calculations for O(IN) rows (or columns) at a cost of O(N?logkN) time. In ad-
dition, the global pool P is sorted in O(N?log N) time, and the decision prob-
lem is executed in O(N?logk) time. Consequently, the expected run time is
O(k+(N?logkN)log N) and the worst-case run time is O(k+ N3 log kN) including
O(k) preprocessing time for geodesics.

The preprocessing step of [11] requires O(k) space, and this space must remain
allocated throughout the algorithm. O(N?) additional space is sufficient for the
remaining steps.

O

4.5. Non-Geodesic Fréchet Distance Run Time. Although the exact non-
geodesic Fréchet distance is normally computed in O(N?log N) time using para-
metric search (see [3]), the constant factors involved in parametric search can be
enormous [8]. To mitigate these expensive constant factors, Oostrum and Veltkamp
[19] have implemented a Quicksort-based parametric search algorithm.

To the best of our knowledge, the randomized algorithm in section 4.3.1 pro-
vides the first practical alternative to parametric search for solving the Fréchet
optimization problem.

Theorem 5. The exact non-geodesic Fréchet distance between two polygonal curves
A and B in the plane can be computed in O(N? log? N) ezpected time, where N is
the larger of the complexities of A and B. O(N?) space is required.

Proof. The argument is very similar to the proof of Theorem 4. The main difference
is that non-geodesic distances can be computed in O(1) time (instead of the O(log k)
time needed for geodesic distances).

O

5. GEODESIC HAUSDORFF DISTANCE

Hausdorff distance is a similarity metric commonly used to compare sets of points
or sets of line segments. The directed Hausdorff distance can be formally defined as
du(A, B) = sup,c4 infrep d(a,b), where A and B are sets and d(a, b) is the geodesic
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distance between a and b (see [3] and [5]). Intuitively, the Hausdorff distance
finds for each a € A the distance to its nearest neighbor in B. The supremum of
these nearest neighbor distances is 0y (A4, B). The undirected Hausdorff distance
is the larger of the two directed distances: &z (A, B) = max(dg (A, B), du(B, A)).
Sections 5.1 and 5.2 show how to compute dz inside a simple polygon for sets of
points or sets of line segments.

5.1. Points.

Theorem 6. §y (A, B) for point sets A, B inside a simple polygon P can be com-
puted in O((k + N)log(k + N)) time and O(k+ N) space, where N is the larger of
the complezities of A and B and k is the complexity of P.

Proof. Precompute the geodesic Voronoi diagrams VD4, VDp for A and B inside
P. These can be found in O((k + N)log(k + N)) time and O(k + N) space using
the algorithm of [17]. Also preprocess P for shortest path queries in O(k) time and
space using the algorithm of [13].

For each point a € A, find its nearest neighbor ¢’ € B in O(log k) time via point
location in V Dp and compute the geodesic distance d(a,a’) in O(log k) additional
time using the algorithm of [13]. Return the maximum of these distances as the
value of 677 (A, B). Compute o5 (B, A) is a similar manner.

Calculating 07 (A, B) requires O(log k) time for each point in A; this is O(N log k)
total time after preprocessing. Including preprocessing yields a run time of O(k +
N)log(k+ N)). The space bounds are also dominated by the O(k + N) preprocess-
ing. 6y (B, A) requires identical time and space bounds as does 8 (A, B) since it
is the larger of 65 (A, B) and 05 (B, A).

O

5.2. Line Segments. The directed Hausdorff distance dz (A, B) for sets of line
segments A and B is computed by finding for each a € A the nearest neighbor
point on any line segment in B to any point on a. The result is a set of nearest
neighbor distances, and SH(A, B) is the supremum of these distances. It has been
shown in [4] that by intersecting line segments with Voronoi edges the number
of critical points that must be considered is O(1) per line segment. However, no
geodesic Voronoi diagram for line segments has been published to our knowledge,
so the below algorithm essentially computes geodesic distances between all pairs
a € A, b€ B of line segments.

Theorem 7. 0y (A, B) for sets of line segments A, B inside a simple polygon P
can be computed in O(k+ N?logk) time and O(k+ N) space, where N is the larger
of the complexities of A and B and k is the complezity of P.

Proof. Consider first the simple case of computing 0 (ab, cd) between two line
segments. dp(ab,cd) is exactly the minimum value of He; -, where Ho — is a
distance function defined in section 2.6 for the hourglass H_; ;.

The task is to find the minimum value of Hz;  for any type of hourglass
Hep, g~ For an intersecting hourglass, (cf. 2.3), clearly dx(ab, cd) = 0 since ab and
cd intersect.

For a closed hourglass, Hg; 7 equals the | T-bitone distance function Fgz ,, (cf.
section 2.6). The minimum value of F ,, is available in O(log k) time by Lemma
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6 once the position of M, is known. M, € cd (cf. section 2.6) is the position on
cd where the minimum distance in u, cd OCCurs. Therefore, it can also be found in
O(log k) time by Lemma 6.

An open hourglass is easier to handle once it is split into three pieces defined by
M,, My € cd as demonstrated in section 2.6. M, can be found in O(log k) time as
described above, and M} can be found similarly.

For the open hourglass He =, Hz z; is the concatenation of distance functions
for two funnels and an Ly-section (cf. section 2.6). The minimum value for H;
can be found in O(logk) time by simply finding the minimum distance for both
funnels and returning the smaller value. The Lo-section need not be considered since
its distance function is monotone. This means that given any two line segments ab
and cd, 6 (ab, cd) can be computed in O(log k) time after preprocessing.

61 (A, B) can be computed for sets A, B as follows. For a single line segment
a € A compute the minimum distance to every b € B. This yields the distance to
a’s nearest neighbor in B in O(N log k) time. Repeating this step for every a € A
and returning the supremum of all the nearest neighbor distances yields 6z (A, B)
in O(N?logk) time after O(k) preprocessing (see [13]) for shortest paths.

Ouly O(k) space is needed for preprocessing but clearly the simple polygon and
sets A, B must be stored, so the space requirement is O(k + N). (B, A) and
dr (A, B) have identical time and space bounds.

O

6. CONCLUSION

To compute the geodesic Fréchet distance between two polygonal curves inside
a simple polygon, we have proven that a geodesic cell has at most one free space
region R and that R must be monotone. It follows from the monotonicity of R that
reachability information can be propagated through a cell in constant time once
the cell boundaries are known. By extending the shortest path algorithm of [11]
and [13], the boundaries of a single cell can be computed in logarithmic time, and
this approach leads to an efficient algorithm to solve the geodesic Fréchet decision
problem.

A randomized algorithm based on counting red-blue intersections inside an in-
terval o, 0] is used to solve the geodesic Fréchet optimization problem in lieu of the
standard parametric search approach. The randomized algorithm is also a practical
alternative to parametric search for the non-geodesic Fréchet optimization problem
in the plane.

These results allow computing the geodesic Fréchet distance between two polygo-
nal curves A and B inside a simple bounding polygon P in O(k+(N?1log kN)log N)
expected time, where N is the larger of the complexities of A and B and k is the
complexity of P. In the worst-case, both the randomized algorithm and parametric
search include cubic terms. In the expected case, the randomized algorithm is an
order of magnitude faster because a straightforward parametric search (even with
Cole’s [8] optimization) would need to sort O(kN?) values.

The beauty of the geodesic Fréchet decision problem is that cell boundaries can
be computed in the same asymptotic time that it takes to compute a shortest path.
By [13], the algorithm used to compute these shortest paths is optimal. Therefore,
it is unlikely that a single cell’s boundaries can be computed asymptotically faster
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than we have shown. An attempt to cluster cells together to achieve a superior run
time has potential but would likely lose the ability to perform logarithmic searches.

The geodesic Hausdorff distance for point sets inside a simple polygon can be
computed in O((k + N)log(k + N)) time and O(k + N) space. The approach is
based on geodesic Voronoi diagrams and geodesic distance queries. As we know of
no published algorithm to create the geodesic Voronoi diagram for line segments,
the geodesic Hausdorff distance for line segments is more difficult to compute. Our
approach uses O(k + N2%logk) time and O(k + N) space. The development of a
geodesic Voronoi diagram for line segments would almost certainly improve this run
time.
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