
GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE ASIMPLE POLYGONATLAS F. COOK IV AND CAROLA WENKAbstrat. We unveil an alluring alternative to parametri searh that appliesto both the non-geodesi and geodesi Fréhet optimization problems in theplane. This randomized approah is based on a variant of red-blue intersetionsand is appealing due to its elegane and pratial e�ieny when ompared toparametri searh.The frontiers of knowledge are expanded by our debut of the �rst algo-rithm for the geodesi Fréhet deision problem between two polygonal urves
A and B inside a simple bounding polygon P . The geodesi deision prob-lem is asymptotially almost as fast as its non-geodesi sibling and requires
O(N2 log k) time and O(k + N) spae after O(k) preproessing, where N isthe larger of the omplexities of A and B and k is the omplexity of P . Theulmination of our work is a randomized solution to the geodesi Fréhet op-timization problem that runs in O(k + (N2 log kN) log N) expeted time and
O(k+N2) spae. This run time is within a logarithmi fator of being asymp-totially equivalent to the run time of the non-geodesi Fréhet optimizationproblem [3℄.The algorithm for the geodesi Fréhet deision problem rests on a foun-dation of several key properties. We prove that a geodesi ell for polygonalurves inside a simple polygon P has at most one free region and that thisregion is monotone. This allows reahability information to be propagatedthrough a ell in onstant time one its boundaries are known. We also showhow to ompute a ell's boundaries in O(log k) time after preproessing P in
O(k) time and spae.Other interesting and related results are that the geodesi Hausdor� dis-tane between point sets inside a simple polygon P an be omputed in
O((k + N) log(k + N)) time and O(k + N) spae. The approah relies on geo-desi Voronoi diagrams and geodesi distane queries inside P . The geodesiHausdor� distane for line segments inside P an be found in O(k + N2 log k)time and O(k + N) spae. 1. IntrodutionThis setion reviews the approah ommonly used to ompute the non-geodesiFréhet distane, disusses related work, and outlines the rest of the paper. Thisinformation serves as essential bakground for omputing the geodesi Fréhet dis-tane.1.1. Fréhet distane bakground. The Fréhet distane is a similarity metrithat returns a value indiating how similar two urves are to eah other. Applia-tions of the Fréhet distane inlude map mathing [20℄ and shape similarity.The Fréhet distane is ommonly illustrated by a person walking a dog on aleash [3℄. The person walks forward on one urve, and the dog walks forward on theDate: August 18, 2007. 1
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a)Figure 1. Two polygonal urves (a) are mapped onto the axes ofa two-dimensional graph (b). For polygonal urves, the graph issubdivided into ells based on the positions of the urve verties().other urve. As the person and dog move along their respetive urves, a leash ismaintained to keep trak of the separation between them. The maximum separationattained during the walk de�nes the required length of the leash.The Fréhet distane is the length of the shortest leash that makes it possiblefor the person and dog to walk from beginning to end on their respetive urveswithout breaking the leash. The leash's length is a measure of how similar the twourves are to eah other. Short leashes mean the urves are similar; long leashesmean the urves are di�erent. See setion 2.2 for a formal de�nition of the Fréhetdistane.To ompute the Fréhet distane, a way of representing all possible person anddog walks is needed. Alt and Godau's standard representation [3℄ maps the twourves (e.g., Figure 1a) onto the axes of a two-dimensional graph (e.g., Figure 1b).Parametrizing these urves into the range [0, 1] fores the graph to be de�ned ina unit square. For polygonal urves, the graph is partitioned into ells by uttingthe graph at every position where a urve has a vertex. This partitioned graph isalled the free spae diagram and is illustrated in Figure 1.The free spae diagram represents all possible person and dog walks along theirrespetive urves. At the beginning of the walk, the person and dog are positionedat the start of their urves. This position ours at the bottom-left orner of thefree spae diagram. At the end of the walk, the person and dog are positioned atthe end of their urves, and this ours at the upper-right orner of the free spaediagram. All walks relevant to the Fréhet distane are paths in the free spaediagram from the bottom-left orner to the upper-right orner. If the person anddog are only allowed to move forward on their urves (i.e., not bakward), thenonly monotone paths in the free spae diagram should be onsidered.The free spae diagram provides a means of solving a subproblem of the Fréhetdistane alled the deision problem. The deision problem assumes a leash oflength ε is given. True is returned if a leash of length ε is long enough to permit amonotone person and dog walk from start to �nish. Otherwise, false is returned.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 3Notie that any point (p, d) in the free spae diagram is assoiated with a point
p on the person urve and a point d on the dog urve. Consequently, the point
(p, d) an be mapped to the distane d(p, d) between p and d, where this distanemust be either ≤ ε or > ε.To solve the deision problem, distanes in the free spae diagram are ategorized.Free spae onsists of all points (p, d) in the free spae diagram with d(p, d) ≤ ε.Intuitively, points in the free spae are assoiated with positions during the walkwhere the person and dog are lose together. Constrained spae onsists of all pointsin the free spae diagram with d(p, d) > ε. Intuitively, points in the onstrainedspae are assoiated with positions during the walk where the person and dog arefar apart.The Fréhet deision problem returns true only when a path exists that satis�estwo onditions. First, the path must be monotone and travel from the bottom-leftorner to the the upper-right orner of the free spae diagram. Seond, the pathmust only travel through free spae. We deide if suh a path exists (for polygonalurves) by subdividing the free spae diagram into ells and omputing eah ell'sfree spae. Dynami programming is used to propagate reahability information ona ell-by-ell basis.After solving the deision problem, the idea of binary searh allows onvergingto the shortest leash length ε∗ suh that the deision problem is still true. Thislength ε∗ is the Fréhet distane and is the solution to the Fréhet optimizationproblem. To guarantee onverging to the exat value of ε∗ in a ontinuous domain,parametri searh (see [2℄ and [3℄) is often used in lieu of binary searh.1.2. Related Work. Most previous work assumes an obstale-free environmentwhere the leash onneting the person to the dog has its length de�ned by an Lpmetri. In [3℄ the Fréhet distane between polygonal urves A and B is omputedin arbitrary dimensions for obstale-free environments in O(N2 log N) time, where
N is the larger of the omplexities of A and B. Variations of the Fréhet distanehave allowed the urves to be simple polygons [7℄ or pieewise smooth [18℄ instead ofpolygonal. Fréhet distane has also been used suessfully in the pratial domainof map mathing [20℄. All these works assume a leash length that is de�ned by an
Lp metri.This paper's ontribution is to measure the leash length by its geodesi distaneinside a simple polygon P (instead of by its Lp distane). To our knowledge, thereare only two other works that employ suh a leash. One is a workshop artile [15℄that omputes the Fréhet distane for polygonal urves A and B on the surfae ofa onvex polyhedron, but their method requires O(N3k4 log(kN)) time. The otherpaper [9℄ applies the Fréhet distane to morphing by onsidering the polygonalurves A and B to be obstales that the leash must go around. Their method worksin O(N2 log2 N) time but only applies when A and B both lie on the boundary ofthe simple polygon P . Our work an handle both this ase and more general ases.We onsider P as the only obstale, and the urves are allowed to our at arbitrarypositions inside P .1.3. Outline. A ore idea of this paper is that the free spae in a geodesi ell ismonotone. We show how to quikly ompute a ell boundary and how to propagatereahability through a ell in onstant time. This is su�ient to solve the geodesiFréhet deision problem. To solve the geodesi Fréhet optimization problem, we



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 4replae the standard parametri searh approah by a novel and asymptotiallyfaster (in the expeted ase) randomized algorithm that is based on red-blue inter-setion ounting. It is notable that the randomized algorithm also applies to thenon-geodesi Fréhet optimization problem in the plane.In setion 2, the hourglasses and funnels of Guibas et al. [10℄ are disussed.These strutures represent shortest paths inside a simple polygon and are used toprove that any horizontal or vertial line segment in a geodesi ell has at most oneonneted set of free spae values. We also show how to ount and report ertaintypes of red-blue intersetions. Setion 3 extends the results on hourglasses andfunnels to prove that a geodesi ell has at most one free region. This region mustbe monotone, and reahability information an be propagated through this regionin onstant time one the ell boundaries are known.Setion 4 shows how to ompute the boundaries of a geodesi ell, the geodesiFréhet deision problem and the geodesi Fréhet optimization problem. The dei-sion problem an be solved in O(N2 log k) time after preproessing. The main resultof this paper is that the geodesi Fréhet distane between two polygonal urvesinside a simple bounding polygon an be omputed in O(k + (N2 log kN) logN)expeted time and O(k + N3 log kN) worst-ase time, where N is the larger of theomplexities of A and B and k is the omplexity of the simple polygon. This ex-peted run time is almost a quadrati fator in k faster than the straightforwardapproah, similar to [9℄, of partitioning eah ell into O(k2) subells. Brie�y, thesesubells are simple ombinatorial regions based on pairs of hourglass intervals. Se-tion 5 shows how to ompute the geodesi Hausdor� distane for sets of points orsets of line segments inside a simple polygon.2. PreliminariesTo ompute the geodesi Fréhet distane for two polygonal urves A and Binside a simple polygon P , a few onepts need to be de�ned. Setions 2.1 and 2.2introdue notation and de�nitions. In setion 2.3, the hourglasses and funnels of[10℄ are desribed. Setions 2.4 and 2.5 show that funnels have a simple struture.Setion 2.6 introdues a distane funtion for an hourglass that also has a simplestruture. Setion 2.7 shows how to perform red-blue intersetion ounting and re-porting. Suh intersetions are theoretially interesting and will also have pratialimpliations for solving the geodesi Fréhet optimization problem.2.1. Notation. Let k be the omplexity of a simple polygon P that ontains thepolygonal urves A and B in its interior. A geodesi is a path that avoids allobstales and annot be shortened by slight perturbations [16℄. Let π(a, b) denotethe geodesi inside P between two points a and b. The geodesi distane d(a, b)is the length of a shortest path between a and b that avoids all obstales, wherelength is measured by L2 distane.Let ↓, ↑, and ↓↑ denote dereasing, inreasing, and dereasing then inreasingfuntions, respetively. For example, �H is ↓↑-bitone� means that H is a bitonefuntion that is �rst monotone dereasing then monotone inreasing.2.2. De�nitions. The Fréhet distane is formally de�ned as
δF (A, B) = inf

f,g:[0,1]→[0,1]
sup

t∈[0,1]

d( A(f(t)), B(g(t)) )
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a)Figure 2. a) An open hourglass with marked hourglass verties,b) a losed hourglass, and ) an interseting hourglass.where f and g range over ontinuous non-dereasing reparametrizations. Intuitively,a free spae ell C is de�ned by two line segments ab ∈ A and cd ∈ B. More formally,suppose the polygonal urves are de�ned as A : [0, m] → V and B : [0, n] → V ,where V is a Eulidean vetor spae in the plane and m and n are, respetively,the number of line segments de�ning A and B. Cell Cij = [i − 1, i] × [j − 1, j] for
1 ≤ i ≤ m and 1 ≤ j ≤ n (see [3℄).2.3. Funnels and Hourglasses. All geodesis in a free spae ell C an be de-sribed by either the funnel or hourglass struture of [10℄. A funnel desribes allshortest paths between a point and a line segment, so it represents a horizontal (orvertial) line segment in a free spae ell. An hourglass desribes all shortest pathsbetween two line segments and represents an entire free spae ell.Let the funnel Fp,cd represent all shortest paths between an apex point p and aline segment cd. Fp,cd is the region bounded by the line segment cd and the shortestpath hains π(p, c) and π(p, d). That is, Fp,cd =cd ∪ π(p, c) ∪ π(p, d). The shortestpath hains π(p, c) and π(p, d) are �outward onvex� by [10℄; in other words, theonvex hulls of π(p, c) and π(p, d) lie outside Fp,cd.There are three types of hourglasses: open, losed, and interseting. An openhourglass is de�ned by non-rossing ab and cd and two disjoint shortest path hains
π(a, c) and π(b, d). A losed hourglass is an open hourglass but with a ollapsedinterior: π(a, c) and π(b, d) share a ommon polygonal path that is traversed by allshortest paths between ab and cd. An interseting hourglass is de�ned when ab and
cd ross and de�nes four shortest path hains π(a, c), π(a, d), π(b, c), and π(b, d).Open, losed, and interseting hourglasses are illustrated in Figures 2a, 2b, and 2.In general, any type of hourglassHab,cd an be represented as the region boundedby shortest path hains and line segments. That is, Hab,cd = π(a, c) ∪ π(a, d) ∪

π(b, c) ∪ π(b, d) ∪ ab ∪ cd.We have seen that any geodesi ell C an be desribed by either an open hour-glass, a losed hourglass, or an interseting hourglass. All three of these strutureshave O(k) verties, where k is the omplexity of the simple polygon P . This fol-lows beause all shortest paths (e.g., π(a, c)) inside a simple polygon P are ayli,polygonal, and only have orners at verties of P [12℄.2.4. Intervals. Any geodesi π(p, q) in P between a �xed point p and any point
q ∈ cd an be desribed by a funnel Fp,cd with outward onvex hains π(p, c),
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Figure 4. The geodesi distane funtion Fp, cd is pieewise hy-perboli.
π(p, d). By extending all line segments on these polygonal hains into lines andinterseting these lines with cd, a partition of cd into O(k) intervals I1, I2, ..., IR isobtained. Shortest paths from p to any point q ∈ Ij are ombinatorially the samefor 1 ≤ j ≤ R. See Figure 3.All shortest paths from p to any point q ∈ Ij are polygonal and have the form
p, pi, pi+1, ..., j, q where pi, ..., j are the funnel hain verties that the path visits.Let L be the length of the path p, pi, pi+1, ..., j. The length of a shortest pathfrom p to q is L + d(j, q), where d(j, q) is equal to the L2 distane between j and
q. Varying q along Ij yields the distane funtion d(j, Ij) + L. This funtion is ahyperboli ar αj sine d(j, Ij) equals the L2 distane from a point to a line segmentand L is a onstant. αj ahieves its minimum distane at either an endpoint of Ijor the perpendiular from j to Ij .Sine d(p, Ij) is a hyperboli ar, the distane funtion Fp, cd from p to the entireline segment cd is pieewise hyperboli. In setion 2.5 we will see that Fp, cd isbitone, so at most one of the hyperboli ars is bitone; all other ars are monotone.2.5. Funnel Bitoniity. Any horizontal (or vertial) line segment inside a geo-desi free spae ell has a distane funtion Fp, cd : [c, d] → R with Fp, cd(q) =

d(p, q). In setion 2.4, we saw that Fp, cd is pieewise hyperboli, and this behavioris illustrated in Figure 4.Lemma 1. Fp, cd is ↓↑-bitone.Proof. Without loss of generality, assume that cd is vertial. If we examine theslopes of the line segments de�ning the funnel hains in order from c to p along
π(c, p) and ontinuing from p to d along π(p, d), we see that the sequene of theseslopes is monotone. The two hains separately have monotone slopes due to their
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Figure 5. Fp, cd is ↓↑-bitone beause at most one interval Iv anbe bitone. Dotted line segments are perpendiulars from eah hainvertex to cd.onvexity. The slopes where the two hains meet at apex p are also monotone sinethe two hains never ross eah other.Partition cd into O(k) intervals I1, I2, ..., IR as in setion 2.4. Eah interval Ijfor 1 ≤ j ≤ R is de�ned by two rays Rj−1 and Rj that originate at hain vertex jand interset cd. Let αj ∈ Fp, cd be the hyperboli ar for Ij .
αj is bitone if and only if the perpendiular ⊥j from j to the line ζ supporting

cd lies stritly in the interior of Iv. Otherwise, αj is monotone. Let the slope of
⊥j be µ, and note that µ is onstant over all hain verties. Sine Ij is de�ned bytwo rays Rj−1, Rj from j to ζ, ⊥j will only interset ζ in Ij when the slope µ liesbetween the slopes of Rj−1 and Rj . Sine the ray slopes are monotone through theintervals I1...R, at most one bitone ar αv for 1 ≤ v ≤ R exists. Hene, at most onear of Fp, cd is bitone; the rest are monotone.Suppose ⊥v lies in the interior of Iv so that αv is ↓↑-bitone. By the mono-toniity of the rays de�ning the intervals, α1...(v−1) is ↓-monotone and α(v+1)...R is
↑-monotone. If ⊥v lies on the ommon boundary of Iv−1 and Iv, then α1...(v−1) is
↓-monotone and αv...R is ↑-monotone. Hene, Fp, cd is ↓↑-bitone. See Figure 5.

⊓⊔Corollary 1. Any horizontal (or vertial) line segment in a free spae ell has atmost one onneted set of free spae values.Proof. A horizontal (or vertial) line segment in a geodesi free spae ell has adistane funtion Fp, cd. Free spae onsists of all values less than or equal to agiven distane ε. Sine Lemma 1 ensures that Fp, cd is ↓↑-bitone, Fp, cd has at mostone onneted set of free spae values.
⊓⊔2.6. Hourglass Bitoniity. This setion introdues a ↓↑-bitone distane funtion

Hab, cd for the hourglass Hab, cd. Hab, cd will be useful in setion 3.1 for analyzingthe struture of a geodesi free spae ell.Consider the hourglass Hab, cd. Let the shortest distane from a to any point on
cd our at the point Ma ∈ cd. De�ne Mb similarly.As p is varied from a to b, the minimum distane from p to cd traes out afuntion Hab, cd : [a, b] → R with Hab, cd(p) = minq∈[c,d] d(p, q). See Figure 6.
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as p is varied from a to b.Lemma 2. Hab, cd is ↓↑-bitone.Proof. By optimal substruture, shortest paths from p to cd will not ross as p isvaried from a to b, so Hab, cd and Hab, MaMb

are idential funtions. The task is toshow that Hab, MaMb
is ↓↑-bitone regardless of whether the hourglass Hab, MaMb

isopen, losed, or interseting (f. setion 2.3).Suppose that Hab, MaMb
is an open hourglass. Without loss of generality, assumethat MaMb is vertial. Let µab be the slope of ab. Let Sa and Sb be the pointswhere horizontals from Ma and Mb interset ab. Sa and Sb will exist for any openhourglass Hab, MaMb

where Ma 6= Mb beause the position of the minimal distanefrom p to cd always ours at either c, d, or a perpendiular to the interior of cdby [16℄.1
Hab, MaMb

an be split into three parts: two funnels FaSa, Ma
, FSbb, Mb

, and an
L2-setion L that lies in-between the two funnels2. Let FaSa, Ma

, FSbb, Mb
, and FLdenote distane funtions for these three strutures so that Hab, MaMb

has the form
FaSa, Ma

◦ FL ◦ FSbb, Mb
, where ◦ denotes onatenation.At most one bitone ar αv de�nes Hab, MaMb

(f. setion 2.5).3 This followsfrom the proof of Lemma 1 beause the line segment slopes on the hains forma monotone sequene from a to Ma along π(a, Ma) and ontinuing from Mb to balong π(Mb, b).If αv ∈FaSa, Ma
as illustrated in Figure 7a, then learly the slope µab < 0, so

FaSa, Ma
is ↓↑-bitone and FL and FSbb, Mb

are ↑-monotone. When αv ∈FSbb, Mb
,Figure 7b shows that µab > 0, so both FaSa, Ma

and FL are ↓-monotone and
FSbb, Mb

is ↓↑-bitone.4 If αv is part of FL, then ab and cd are parallel, so FaSa, Mais ↓-monotone, FL is onstant, and FSbb, Mb
is ↑-monotone (see Figure 7). Hene,

Hab, cd is always ↓↑-bitone for any open hourglass.Suppose that Hab, MaMb
is a losed hourglass. All shortest paths from p ∈ ab to

cd will end at the same point Ma as shown in Figure 8a. Hene, Hab, MaMb
equals

Fab, Ma
and is ↓↑-bitone by Lemma 1.When Hab, MaMb

is an interseting hourglass, ab and cd will ross at the point
ι as illustrated in Figure 8b. Hab, MaMb

has the form Haι, Maι◦Hιb, ιMb
, where1If Ma = Mb, then H

ab, MaMb
is trivially ↓↑-bitone beause it equals F

ab, Ma
.2Notie that the funnel F

aSa, Ma
uses the seond subsript for the apex. This emphasizesthat the apex ours on cd instead of on ab.3If no bitone ar helps de�ne H

ab, MaMb
, then learly H

ab, MaMb
is monotone.4If µ

ab
= 0, then Ma = Mb, and H

ab, cd
is ↓↑-bitone beause it equals F

ab, Ma
.
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a) b)Figure 8. a) A losed hourglass always has Ma = Mb. b) Aninterseting hourglass an be split into two (shaded) open hour-glasses.
Haι, Maι and Hιb, ιMb

are distane funtions for open hourglasses. By the abovearguments on open hourglasses, Haι, Maι and Hιb, ιMb
are eah (at-worst) ↓↑-bitone.Consider varying p from a to ι. d(a, Ma) is positive and d(ι, ι) = 0. Hene, Haι, Maιis atually ↓-monotone. Varying p from ι to b is similar: d(ι, ι) = 0 and d(b, Mb) ispositive, so Hιb, ιMb

is ↑-monotone. Therefore, Hab, cd is ↓↑-bitone.
⊓⊔2.7. Red-Blue Intersetions. This setion shows how to e�iently ount andreport a ertain type of red-blue intersetions in the plane in an arbitrary interval

α ≤ x ≤ β. This problem is interesting both from theoretial and applied stanesand will prove useful in setion 4.3.1 for the Fréhet optimization problem.Let R = {r1(x), r2(x), ..., rm(x)} be a set of m �red� urves in the plane suhthat eah red urve is monotone dereasing and has O(k) omplexity. Let B =
{b1(x), b2(x), ..., bn(x)} be a set of n �blue� urves in the plane where eah blueurve is monotone inreasing and has O(k) omplexity. Let V (k) be the time toompute the value of any red or blue urve at a given x-position.Let I(k) be the time to �nd the intersetion of any ri(x) and bj(x). Observethat any monotone dereasing urve ri(x) ∈ R intersets a monotone inreasingurve bj(x) ∈ B in at most one ontiguous sequene of points (as a onsequene
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ymax suh that min(ri(x)) = ymin for all 1 ≤ i ≤ m and max(bj(x)) = ymax forall 1 ≤ j ≤ n. In addition, the (open) interval α < x < β must ontain no leftendpoint of any red or blue urve.Theorem 1. The number of intersetions in the interval α ≤ x ≤ β between everyred urve ri(x) ∈ R and all bj(x) ∈ B an be ounted in O(N(V (k) + log N)) totaltime, where N = max(m, n).Proof. A key idea is that if ri(p) ≥ bj(p) at x = p, then the urves ri(x) and bj(x)will interset for some x ≥ p. This follows beause min(ri(x)) ≤max(bj(x)).Intersetions in the interval α ≤ x ≤ β an be ounted by taking �snapshots� ofthe urve positions at the endpoints α and β. The α-snapshot is found by omputingthe values of all red and blue urves at α in O(N ∗ V (k)) time and sorting thesevalues to reate the list Lα in O(N log N) time. The list Lβ an be found similarlyin O(N(V (k) + log N)) additional time.If a urve is de�ned entirely outside the interval α ≤ x ≤ β, then it an be safelyignored. If a urve's right endpoint lies stritly inside the interval, then this rightendpoint an oneptually be extended horizontally to β. This extension will onlyreate false red-blue intersetions when the left endpoint of a bj(x) urve appearsat x = β suh that bj(β) =ymax, and this speial ase an easily be handled withoutinreasing the time bounds.For ounting queries, the sorted list Lα is preproessed in O(N) time by onelinear san over Lα. For eah ri(α) ∈ Lα, let ri(α)->n be the number of bj(α)suh that ri(α) > bj(α). De�ne ri(β)->n similarly. In essene, eah red urve ri(x)keeps trak of how many blue urves bj(x) lie below it beause these urves willinterset for some x ≥ α. Preproessing Lβ yields red-blue intersetions for x ≥ β.For ounting purposes, the number of x ≥ α intersetions minus the number of
x ≥ β intersetions yields the number of intersetions in α ≤ x < β. Sine it is asimple matter to ompute the intersetions at x = β from the sorted list Lβ, allintersetions of ri(x) with B for α ≤ x ≤ β an be ounted in O(N(V (k) + log N))time. See Figure 9.

⊓⊔
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Figure 10. In the situation depited by Figure 9, intersetionreporting �nds that r3(x) intersets b2(x) in the interval α ≤ x ≤ β.Theorem 2. The intersetions in the interval α ≤ x ≤ β between every red urve
ri(x) ∈ R and all bj(x) ∈ B an be reported in O(N(V (k) + log N + I(k)) + K)total time, where K is the total number of intersetions reported.Proof. The goal is to ompute for every ri(x) a list of all bj(x) suh that ri(x)∩bj(x)for α ≤ x ≤ β. Testing if two urves are equal at x = α or x = β is straightforward,so we do not mention this ase further. An intersetion ours for α < x < β exatlywhen ri(α) > bj(α) and ri(β) < bj(β) are both true. Intuitively, the �rst onditionmeans that ri(x) must interset bj(x) for some x > α. The seond ondition meansthat there is no intersetion for x ≥ β. This implies that ri(x)∩bj(x) for α < x < β.The sorted lists Lα, Lβ are together su�ient to report all red-blue interse-tion pairs. To extrat these pairs e�iently, a balaned binary searh tree TR isinrementally onstruted from red urve indies. Eah blue urve is handled byquerying TR.Let Iβ(ri(x)) denote the index of ri(x) in the list Lβ. Similarly de�ne Iβ(bi(x)).Begin with TR = ∅. Marh through Lα in dereasing order (i.e., top-to-bottomin Figure 9). Proess eah ri(x) by inserting Iβ(ri(x)) into TR in O(log N) time.For eah bj(x), query TR with Iβ(bj(x)). All ri(x) with indies in TR less than thisquery index will interset bj(x). See Figure 10.

⊓⊔3. Geodesi Cell PropertiesAll results in this setion are for polygonal urves inside a simple polygon. Insetion 3.1, we show that a geodesi free spae ell has at most one free regionand that this region is monotone. Setion 3.2 extends this result to show thatreahability an be propagated through a ell in onstant time one its boundariesare known.3.1. Cell Free Spae. Consider a geodesi free spae ell C for polygonal urves
A and B inside a simple polygon. The goal of this setion is to show that C has atmost one free region and that this region is x and y monotone.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 12Reall that a free spae ell C is de�ned by two line segments: ab ∈ A and
cd ∈ B. A horizontal (or vertial) line segment in C has a distane funtion Fp, cdbetween a �xed point p ∈ ab and the line segment cd.Lemma 3. For any ε, C has at most one free spae region R. R must be monotoneand onneted.Proof. A simple polygon is x-monotone if any vertial line intersets it in at mostone onneted interval. A polygon is y-monotone if any horizontal line intersetsit in at most one onneted interval. By Corollary 1, any free spae region R in
C must be x and y monotone. Next, it is proven that all free spae points areonneted so that C has at most one free spae region.Let ε > 0 be given. Take any two points (p1, q1), (p2, q2) in the free spae, i.e.,
d(p1, q1) ≤ ε and d(p2, q2) ≤ ε. We need to show that they are onneted in thefree spae. For this, �rst move vertially from (p1, q1) to the minimum point on itsvertial. Do the same for (p2, q2). By Lemma 1, this movement auses the distaneto derease monotonially. By Lemma 2, any two minimum points are onnetedby a ↓↑-bitone distane funtion Hab, cd (f. setion 2.6), but as the starting pointsare ≤ ε all points on this onstruted path are ≤ ε.

⊓⊔3.2. Cell Reahability. This setion proves that given C's boundaries, it is pos-sible to propagate reahability information through C in onstant time. In otherwords, the spae inside C's boundaries is not required to ompute the Fréhetdistane.Reahability information is ruial to solving the Fréhet deision problem. Re-all from setion 1 that in order to solve the Fréhet deision problem we need toknow if a monotone path exists through the free spae diagram from the bottom-leftorner to the upper-right orner. Reahability information is a way of loally enod-ing on a ell-by-ell basis those free spae points that are reahable by a monotonepath from the bottom-left orner of the free spae diagram. Let CL, CT , CR, CBbe the left, top, right, and bottom boundaries of C, respetively.Lemma 4. Given the reahable points for CL and CB plus the free spae points on
CR and CT , reahability information an be propagated to CR and CT in onstanttime.Proof. Lemma 1 ensures that CL and CB eah have at most one onneted set ofreahable points. If some point p ∈ CL is reahable, then all free spae on CT isreahable. This is true beause C's free region R is both onneted and monotone.Consequently, there must be some path π(p, l) from p ∈ CL to CT 's leftmost freespae point l. π(p, l) is monotone beause one an follow the monotone free spaeboundary between these two points. Symmetrially, if any point on CB is reahable,then all free spae on CR is reahable. See Figure 11a.If no point on CL is reahable, then the only possible monotone path to CT mustoriginate at CB . Imagine shooting a vertial ray V upward from CB 's leftmostreahable point. Let V interset CT at the point q. If q is a free spae point,then q is the leftmost reahable point on CT , and all free spae on CT to the rightof q is reahable. If q is a onstrained spae point, then CT 's free interval eitherlies ompletely left of q or ompletely right of q. The former ase is ompletelyunreahable from CB . The latter ase is ompletely reahable sine one an follow
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Figure 11. Propagating reahability information through ell Ctakes onstant time one C's boundaries are known.
V until it hits onstrained spae and then follow the monotone free spae boundaryto the leftmost free spae point on CT . Propagating reahability from CL to CR isa symmetri ase. See Figures 11b and 11.

⊓⊔4. Geodesi Fréhet AlgorithmThe goal of this setion is to ompute the exat geodesi Fréhet distane δFbetween two polygonal urves inside a simple polygon. Setion 4.1 shows how toompute one ell's boundaries in O(log k) time, and setion 4.2 uses this result tosolve the geodesi Fréhet deision problem. Setions 4.3, 4.4, and 4.5 use the dei-sion problem and red-blue intersetion ounting to solve the Fréhet optimizationproblem. This approah is novel in that it is a pratial alternative to parametrisearh for both the geodesi and non-geodesi Fréhet optimization problems in theplane.4.1. Computing one ell's boundaries in O(log k) time. A ell boundary isa horizontal (or vertial) line segment in a free spae ell. This boundary an beassoiated with a funnel Fp,cd with a distane funtion Fp, cd that is ↓↑-bitone (f.Lemma 1). Given ε ≥ 0, omputing the free spae on a ell boundary requires�nding the (at most two) intersetions t1, t2 of Fp, cd and y = ε.
Fp, cd is de�ned by O(k) ars α1...R as shown in setion 2.4. Any ar αj for

1 ≤ j ≤ R is de�ned by both a point and a line segment. The point is a hainvertex j ∈π(p, c)∪π(p, d) (exluding endpoints c, d). The line segment is an interval
Ij ∈ cd. αj an be omputed in onstant time one j and Ij are known beause αjrepresents the L2 distane between the point j and the line segment Ij . See Figure12a.Suppose the hains π(p, c) and π(p, d) are known. A straightforward way toompute the free spae on a ell boundary is to sequentially ompute all of the ars
α1...R as follows. For eah hain vertex j, ompute Ij by extending the two hainline segments adjaent to j into lines and interseting them with cd. αj an theneasily be onstruted from j and Ij . Repeating this proess for all hain vertiessu�es to onstrut α1...R in O(k) time. See Figure 12b. One all the ars are
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b)Figure 12. a) A funnel Fp, cd is assoiated with a ell boundary.b) The ars α1...R de�ne Fp, cd. ) One the (at most two) inter-setions t1, t2 of Fp, cd with the line y = ε have been found, thefree spae on a ell boundary is immediately known.known, eah ar an be interseted with the line y = ε in onstant time. Theseintersetions are su�ient to de�ne the free spae on a ell boundary as illustratedin Figure 12.To improve the run time of the above approah from O(k) to O(log k) time,realize that it is not neessary to expliitly onstrut all of the ars of Fp, cd. Thears themselves are unimportant. Only the intersetions t1 and t2 of α1...R with
y = ε are required, and a binary searh an �nd these intersetions by examiningonly O(log k) ars. To perform this searh, the hains π(p, c) and π(p, d) must beavailable in O(log k) time, and the hain data struture must support logarithmisearhes over the hain verties.The hains π(p, c) and π(p, d) an be onstruted in O(log k) time (after O(k)preproessing) by the algorithms of Guibas and Hershberger [11℄, [13℄. These algo-rithms represent a hain by a binary searh tree T with O(log k) height.Even though T an have O(k) omplexity, it an be onstruted in only O(log k)time through lever use of preproessing strutures [11℄. A ritial property shownin [13, p. 232℄ is that two adjaent trees of height h(T1) and h(T2) an be onate-nated (i.e., merged) into a new tree with height h(T3) ≤ max(h(T1), h(T2)) + 1.The preproessing step of [11℄ triangulates the simple polygon P and omputesonstant-size trees for eah triangle. These trees are repeatedly merged in bottom-up fashion to reate a �balaned hierarhial deomposition� of P [11℄. Eah ofthese preomputed trees is the result of O(log k) merge operations, so the height ofany preomputed tree is O(log k) .Queries are handled by onatenating at most a logarithmi number of preom-puted trees together [11, p. 56℄. Sine eah onatenation inreases the height ofthe tree by at most one, the �nal tree T will have O(log k) height. The query timeto onstrut T is O(log k) beause [11, p. 61-2℄ ensures that during the query asigni�ant number of onatenations our on trees of small height.To �nd π(p, c), perform a query on the points p and c. The query reates abinary searh tree Tc that represents π(p, c) in O(log k) time. The onstrution of
Td for π(p, d) is similar.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 15Binary searhes on Tc and Td an be performed to �nd the intersetions t1, t2if ars are available to guide the searh. Sine nodes in Tc and Td an be diretlyassoiated with edges but not with ars [13, p. 233℄, a onversion is needed.Converting a node into an ar is possible in onstant time. An ar αv is de�nedby a hain vertex v and a line segment Iv (f. setion 2.4). Let an arbitrary treenode n represent the edge vw, where v and w are adjaent hain verties. Toompute Iv, the two hain line segments adjaent to v must be found. Clearly, vwis one of these edges. The other edge uv is the predeessor of vw.Lemma 5. For any edge vw in Tc or Td, its predeessor uv an be found in onstanttime.Proof. To �nd a node's predeessor in onstant time, the algorithms of [11℄ and [13℄an be extended so that every node n has a pointer nρ to its immediate predeessor.To support onstant time updates to nρ, n also needs a pointer nl to the largestvalued node in the tree rooted at n. Adding these pointers requires modifying thepreproessing step of [11℄ so that these pointers are initialized for all nodes in aonstant-sized hain. In addition to this base ase, the onatenation proess isalso updated.The onatenation proess merges trees T1 and T2 into T3. It reates a new rootnode r and modi�es nodes on two root-to-leaf paths: one in T1 and one in T2 [13,p. 233-4℄. Begin by updating nl for eah of these nodes. nl either points to n itselfor to ol, where o is n's right hild. Eah of these updates takes onstant time ifperformed in bottom-up fashion.Updating nρ on a root-to-leaf path should also be performed bottom-up. If anarbitrary node n (e.g., node 4 in Figure 13) has a left hild m, then nρ is simply
ml. If n has no left hild (e.g., node 5 in Figure 13), then nρ is the �rst anestor n̂suh that n is a right desendant of n̂. This anestor an be maintained during thetraversal so that n̂ is always available in onstant time. If no suh anestor exists,then n is the smallest node in the tree and orretly has no predeessor.There are two �nal predeessors to update to omplete the onatenation. Let rbe the new root and q be r's left hild. Also let w be the smallest node in the treerooted at r's right hild (e.g., node 9 in Figure 13). rρ equals ql, and wρequals r.All pointer updates an be performed in the O(h(T1)+ h(T2)) time that is allowedper onatenation [13, p. 232℄.

⊓⊔Lemma 6. Both the minimum value of Fp, cd and the (at most two) intersetions
t1, t2 of Fp, cd with the line y = ε an be found for any ε ≥ 0 in O(log k) time(after preproessing).Proof. Binary searhes on Tc and Td to �nd t1 and t2 an start by searhing for thebitone ar αv in both trees. αv ontains the minimum value of Fp, cd, and there isat most one bitone ar in Tc ∪ Td beause the trees together represent the hainsof the funnel Fp,cd (f. Lemma 1).Following the binary searh paradigm, separately traverse eah tree in searh ofthe bitone ar αv. At the root node r use rρ to onstrut αr in onstant time (f.Lemma 5). If αr is bitone, then αv has been found, and this step is omplete. If αris ↑-monotone, then reurse on the left hild of r. Otherwise, reurse on the righthild of r.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 16
w

r

q

15

8

4

6

5 73

2

1 9

10

11 13

14

12

Figure 13. Conatenation involves updating predeessors inthree loations: the new root r, the smallest valued node w in
r's right subtree, and two (boxed) root-to-leaf paths. Althoughnodes are assoiated with edges, they are shown with integer val-ues to simplify the predeessor relationship that is indiated by thearrows.The tree that does not ontain αv has a monotone sequene of ars. The othertree has at most two monotone ar sequenes: one on eah side of αv. The in-tersetions t1 and t2 of these monotone ar sequenes with y = ε an be found inlogarithmi time. Simply test the endpoints of the (monotone) urrent ar αr inonstant time. If the endpoints of αr de�ne a range that ontains ε, then �nd theexat intersetion of αr with y = ε. Otherwise, reurse on the appropriate hild of

r.
⊓⊔One the intersetions t1 and t2 are known, they must be mapped onto the ellboundary. One this mapping is known, it is trivial to de�ne the free spae for anyell boundary.Lemma 7. Let t be an arbitrary point on any ar αr ∈Fp, cd that is de�ned by theinterval Ir. The position of t on the ell boundary an be found in O(1) time.Proof. Let the endpoints of Ir de�ne the (losed) range [i, j] on the ell boundary.Compute the ar-length of αr from its left endpoint to t and divide this value bythe total ar-length of αr. This quotient supplies the position in the range [i, j]where t ours. Sine all of these steps take onstant time, the position of t on theell boundary is available in onstant time.
⊓⊔Corollary 2. The free spae on all four boundaries of a single ell an be found in

O(log k) time.Proof. This result follows immediately from Lemmas 6 and 7.
⊓⊔4.2. Geodesi Fréhet Deision Problem.Theorem 3. After a one-time preproessing step of O(k) time [11℄, the geodesiFréhet deision problem for polygonal urves A and B inside a simple polygon Pan be solved for any ε ≥ 0 in O(N2 log k) time and O(k + N) spae.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 17Proof. There are O(N2) ells in the free spae diagram. Compute all ell bound-aries in O(N2 log k) time (f. Corollary 2) and propagate reahability informationthrough all ells in O(N2) time (f. Lemma 4). Return true if the upper rightorner of the free spae diagram is reahable. Return false otherwise.The spae bounds follow beause the ells an be handled via dynami program-ming suh that only two rows need to reside in memory at any one time. Thesetwo rows require only O(N) storage beause only O(1) spae per ell is needed tode�ne the ell boundaries. The O(k) term omes from storing the preproessingstrutures of [11℄ throughout the algorithm's exeution.
⊓⊔4.3. Geodesi Fréhet Optimization Problem. Let ε∗ be the minimum valueof ε suh that the Fréhet deision problem returns true. That is, ε∗ equals theFréhet distane δF . Parametri Searh is a tehnique ommonly used to �nd ε∗(see [3℄, [19℄, [2℄, and [8℄).5. The typial approah to �nd ε∗ is to sort all theell boundary funtions based on the unknown parameter ε∗. The omparisonsperformed during the sort guarantee that the result of the deision problem isknown for all �ritial values� [3℄ that ould potentially de�ne ε∗.Previous sorting algorithms have operated on ell boundaries of onstant om-plexity. The geodesi ase is di�erent beause eah ell boundary has O(k) om-plexity. As a result, a straightforward parametri searh based on sorting thesevalues would require O(kN2 log kN) time even when using Cole's [8℄ optimization.6We present a randomized algorithmwith expeted run timeO(k+(N2 log kN) log N)and worst-ase run time O(k+N3 log kN). This algorithm is an order of magnitudefaster than parametri searh in the expeted ase. Both algorithms involve ubifators in the worst-ase.Eah ell boundary has at most one free spae interval. The upper boundaryof this interval is a funtion bij(ε), and the lower boundary of this interval is afuntion aij(ε). See Figure 14a.The seminal work of Alt and Godau [3℄ de�nes three types of ritial values forthe Fréhet distane. There are exatly two type (a) ritial values assoiated withdistanes between the starting points of A and B and the ending points of A and

B. Type (b) ritial values our O(N2) times when aij(ε) = bij(ε). See Figure14b.Type (a) and (b) ritial values our O(N2) times and are easily handled in
O((N2 log k) log N) time. This proess involves omputing values in O(N2 log k)time, sorting in O(N2 log N) time, and then running the deision problem O(log N)times. Eah exeution of the deision problem resolves half of the remaining ritialvalues. Resolving the type (a) and (b) ritial values as a �rst step will lead to anobservation that simpli�es the randomized algorithm on type () ritial values.Alt and Godau [3℄ show that type () ritial values our when the position of
aij(ε) in ell Cij equals the position of bkj(ε) in ell Ckj in the free spae diagram.See Figure 14a.5An easier to implement alternative to parametri searh is to run the deision problem onefor every bit of auray that is desired. This approah runs in O((N2 log k)B) time, where B isthe desired number of bits of auray [19℄. This approah requires only O(k + N) spae usingrow-based dynami programming for the deision problem.6A variation of the general sorting problem alled the �nuts and bolts� problem (see [14℄) istantalizingly lose to an aeptable O(N2 log N) sort, but it is not solvable in the general ase.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 18
bkj

ε

aij(ε) bij(ε)

ε

aij(ε) bkj(ε)Ckj

c) Distance function with a
type (c) critical valuetype (b) critical value

b) Distance function with aa) Free Space Diagram

Critical value
Critical value

Cij

1.00.0 0.0 1.0
Position on cell boundary

b

Position on cell boundary

ij

aij

akj

Figure 14. There are O(N2) type (b) ritial values and O(N3)type () ritial values.As ε inreases, Figure 14b shows that aij(ε) is ↓-monotone on the ell boundaryand bij(ε) is ↑-monotone. This follows from Lemma 1. As illustrated in Figure14, aij(ε) and bkj(ε) interset at most one. This follows from the monotoniitiesand pieewise hyperboli strutures of aij(ε) and bkj(ε). Hene, there are O(N2)intersetions of aij(ε) and bkj(ε) in row j and a total of O(N3) type () ritialvalues over all rows. There are also O(N2) intersetions of aij(ε) and bik(ε) inolumn i and a total of O(N3) additional type () ritial values over all olumns.Lemma 8. The intersetion of aij(ε) and bkl(ε) an be found for any ε ≥ 0 in
O(log k) time after preproessing.Proof. Using the approah of setion 4.1, onstrut the binary searh trees Ta and
Tb in O(log k) time that are, respetively, assoiated with the monotone funtions
aij(ε) and bkl(ε). We show that a logarithmi searh over Ta and Tb is su�ient to�nd the intersetion of aij(ε) and bkl(ε) or report that no intersetion exists.Start at the roots of both trees. In O(1) time build the ar αa for the urrentnode in Ta. Using the monotoniity of αa, onstrut two axis-parallel retangles
ra1, ra2 in onstant time suh that ra1 ∪ ra2 ontains all potential oordinates forthe other ars in Ta. Repeat this proess for αb, rb1, and rb2.Figure 15 illustrates the general idea. In Figure 15a, it should be lear thatneither αb nor any ar in rb2 an be involved in an intersetion beause αb ∪ rb2 isdisjoint from ra1 ∪ αa ∪ ra2. Consequently, it is orret to move to the left hildof the urrent node in Tb and update αb. Figure 15b shows that in the next step,neither αa nor any ar in ra1 is involved in an intersetion. Consequently, move tothe right hild of the urrent node in Ta and update αa. The third step in Figure15 shows that αb is the only ar in Tb that an interset an ar in Ta. Continuingthe searh on Ta is su�ient to �nd this intersetion or determine that it does notexist.Eah iteration, an algorithm an either return the intersetion of αa∩αb if itexists, report that there is no intersetion, or update αa or αb and ontinue withthe next iteration. We show next that at eah step it is always possible to updateeither αa or αb.Suppose that p is an endpoint of αa. Let A = ra1 ∪ p ∪ ra2 and note that
A ⊃ (ra1∪αa∪ra2). Let B = rb1∪αb∪rb2 for an arbitrary αb. Several observationsfollow diretly from the monotoniities of aij(ε) and bkl(ε). If p is disjoint from B,
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c)b)a)Figure 16. Interseting aij(ε) and bkl(ε) takes O(log k) time.Ars that an be safely disarded are rossed out.then B an interset at most one of ra1, ra2. Hene, either p ∪ ra1 or p ∪ ra2 anbe disarded (see Figure 16a). Similarly, if p lies stritly in the interior of rb1 ∪ rb2,then either αb ∪ rb1 or αb ∪ rb2 an be disarded (see Figure 16b). When p liespreisely on the boundary of rb1 or rb2, then it is possible for B to interset ra1, p,and ra2 (see Figure 16). However, sine endpoints are shared by adjaent ars, itis permissible to disard either p∪ ra1 or p∪ ra2 and also either αb ∪ rb1 or αb ∪ rb2.Hene, at eah step it is always possible to update either αa or αb.The run time follows beause eah step performs onstant work on four retanglesand two ars to determine how to update the ars for the next step. Sine the trees
Ta and Tb have O(log k) height, the total number of steps is O(log k). Hene, analgorithm an �nd the intersetion of aij(ε) and bkl(ε) (or determine that no suhintersetion exists) in O(log k) time.

⊓⊔The below observations imply that Theorems 1 and 2 an be applied to ountand report the number of type () ritial values in the losed interval [α, β].Observation 1. Preomputing the type (a) and type (b) ritial values of [3℄ shrinksthe (losed) interval [α, β] ontaining ε∗ suh that no new aij(ε), bkl(ε) appear inthe open interval (α, β) when proessing the type () ritial values.Observation 2. All aij(ε) have minimum values at the bottom of the ell bound-ary. All bij(ε) have maximum values at the top of the ell boundary. That is,
min(aij(ε)) = 0.0 and max(bij(ε)) = 1.0 for all 1 ≤ i, j ≤ N .



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 204.3.1. Randomized Algorithm. The below randomized algorithm solves the geodesiFréhet optimization problem. This algorithm is asymptotially faster than para-metri searh by an order of magnitude in the expeted ase and shares a ubi runtime with parametri searh in the worst-ase.(1) Preompute and sort all type (a) and type (b) ritial values inO(N2 log kN)time (f. Lemma 6). Run the deision problem O(log N) times to resolvethese values and shrink the ε∗ interval down to [α, β] in O((N2 log k) log N)time.(2) Let j represent an arbitrary row in the free spae diagram. Count thenumber κj of type () ritial values for eah row j in the interval [α, β]using Theorem 1. Intersetion ounting requires O(N log kN) time per rowfor a total of O(N2 log kN) time for all rows. Let Cj be the ounting datastruture for row j.(3) To ahieve a fast expeted run time, use Quiksort's paradigm to pik arandom intersetion for eah row.7 To �nd a random intersetion for row
j, pik a random number between 1 and κj . Sine every aij(ε) ∈Cj storesthe number of intersetions in whih it is involved, a searh through Cj andetermine the partiular aRj(ε) that is involved in the randomly seletedintersetion. One aRj(ε) is known, its O(N) intersetions in [α, β] an bedetermined in O(N log k) time by testing all bkj(ε) that lie below aRj(ε) in
Cj 's list Lα (f. Lemma 8). The randomly seleted intersetion ϑj is thenimmediately available and an be stored for later use.8(4) To ahieve a fast worst-ase run time, also pik the aMj(ε) in eah rowthat has the most intersetions. Add all intersetions in [α, β] that involve
aMj(ε) to a global pool P of unresolved ritial values9 and delete aMj(ε)from any future onsideration. If desired, the intersetions for the randomlyseleted aRj(ε) an also be added to P .(5) O(N2) values are added to P eah step after �nding O(N) intersetions foreah row. Sort all values in P , and �nd the median Ξ of these values. Also�nd the median Ψ of the O(N) randomly seleted ϑj in O(N) time usingthe standard median algorithm mentioned in [14℄.(6) Run the deision problem twie: one on Ξ; one on Ψ. This shrinks theinterval [α, β] and halves the size of P . Repeat steps 2 through 6 until allrow -based type () ritial values have been resolved.(7) Resolve all olumn-based type () ritial values in the same spirit as steps2 through 6.(8) Return the smallest ritial value that satis�es the deision problem (i.e.,
ε∗) as the value of the geodesi Fréhet distane.4.4. Geodesi Fréhet Distane Run Time.Theorem 4. The exat geodesi Fréhet distane between two polygonal urves Aand B inside a simple bounding polygon P an be omputed in O(k+(N2 log kN) log N)7Piking a ritial value at random is related to the distane seletion problem [6℄ and ismentioned in [1℄, but to our knowledge, this alternative to parametri searh has never beenapplied to the Fréhet distane.8In pratie, the median of the intersetions is a better hoie for ϑj .9The idea of a global pool is similar to Cole's optimization for parametri searh [8℄.



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 21expeted time and O(k + N3 log kN) worst-ase time, where N is the larger of theomplexities of A and B and k is the omplexity of P . O(k +N2) spae is required.Proof. Preproess P one for shortest path queries in O(k) time [11℄. In the averagease, eah exeution of the deision problem will essentially ut the total number ofunresolved type () ritial values in half. This follows from the well-known proofof Quiksort's expeted run time. Consequently, the expeted number of iterationsof the algorithm is O(log N3) = O(log N).In the worst-ase, eah of the O(N) aij(ε) in a row will be piked as aMj(ε).Therefore, eah row an require at most O(N) iterations. Sine all rows are pro-essed eah iteration, the entire algorithm requires at most O(N) iterations forrow -based ritial values. By a similar argument, olumn-based ritial values alsorequire at most O(N) iterations.The size of the pool P is expressed by the reurrene S(x) = S(x−1)+O(N2)
2 ,where x is the urrent step number, and S(0) = 0. Intuitively, eah steps adds

O(N2) values to P and then half the values in P are always resolved. It is notdi�ult to see that S(x) ∈ O(N2) for any step number x.Eah iteration of the algorithm requires intersetion ounting and intersetionalulations for O(N) rows (or olumns) at a ost of O(N2 log kN) time. In ad-dition, the global pool P is sorted in O(N2 log N) time, and the deision prob-lem is exeuted in O(N2 log k) time. Consequently, the expeted run time is
O(k+(N2 log kN) log N) and the worst-ase run time is O(k+N3 log kN) inluding
O(k) preproessing time for geodesis.The preproessing step of [11℄ requires O(k) spae, and this spae must remainalloated throughout the algorithm. O(N2) additional spae is su�ient for theremaining steps.

⊓⊔4.5. Non-Geodesi Fréhet Distane Run Time. Although the exat non-geodesi Fréhet distane is normally omputed in O(N2 log N) time using para-metri searh (see [3℄), the onstant fators involved in parametri searh an beenormous [8℄. To mitigate these expensive onstant fators, Oostrum and Veltkamp[19℄ have implemented a Quiksort-based parametri searh algorithm.To the best of our knowledge, the randomized algorithm in setion 4.3.1 pro-vides the �rst pratial alternative to parametri searh for solving the Fréhetoptimization problem.Theorem 5. The exat non-geodesi Fréhet distane between two polygonal urves
A and B in the plane an be omputed in O(N2 log2 N) expeted time, where N isthe larger of the omplexities of A and B. O(N2) spae is required.Proof. The argument is very similar to the proof of Theorem 4. The main di�ereneis that non-geodesi distanes an be omputed in O(1) time (instead of the O(log k)time needed for geodesi distanes).

⊓⊔5. Geodesi Hausdorff DistaneHausdor� distane is a similarity metri ommonly used to ompare sets of pointsor sets of line segments. The direted Hausdor� distane an be formally de�ned as
δ̃H(A, B) = supa∈A infb∈B d(a, b), where A and B are sets and d(a, b) is the geodesi



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 22distane between a and b (see [3℄ and [5℄). Intuitively, the Hausdor� distane�nds for eah a ∈ A the distane to its nearest neighbor in B. The supremum ofthese nearest neighbor distanes is δ̃H(A, B). The undireted Hausdor� distaneis the larger of the two direted distanes: δH(A, B) = max(δ̃H(A, B), δ̃H(B, A)).Setions 5.1 and 5.2 show how to ompute δH inside a simple polygon for sets ofpoints or sets of line segments.5.1. Points.Theorem 6. δH(A, B) for point sets A, B inside a simple polygon P an be om-puted in O((k + N) log(k + N)) time and O(k + N) spae, where N is the larger ofthe omplexities of A and B and k is the omplexity of P .Proof. Preompute the geodesi Voronoi diagrams V DA, V DB for A and B inside
P . These an be found in O((k + N) log(k + N)) time and O(k + N) spae usingthe algorithm of [17℄. Also preproess P for shortest path queries in O(k) time andspae using the algorithm of [13℄.For eah point a ∈ A, �nd its nearest neighbor a′ ∈ B in O(log k) time via pointloation in V DB and ompute the geodesi distane d(a, a′) in O(log k) additionaltime using the algorithm of [13℄. Return the maximum of these distanes as thevalue of δ̃H(A, B). Compute δ̃H(B, A) is a similar manner.Calulating δ̃H(A, B) requiresO(log k) time for eah point in A; this isO(N log k)total time after preproessing. Inluding preproessing yields a run time of O(k +
N) log(k+N)). The spae bounds are also dominated by the O(k +N) preproess-ing. δ̃H(B, A) requires idential time and spae bounds as does δH(A, B) sine itis the larger of δ̃H(A, B) and δ̃H(B, A).

⊓⊔5.2. Line Segments. The direted Hausdor� distane δ̃H(A, B) for sets of linesegments A and B is omputed by �nding for eah a ∈ A the nearest neighborpoint on any line segment in B to any point on a. The result is a set of nearestneighbor distanes, and δ̃H(A, B) is the supremum of these distanes. It has beenshown in [4℄ that by interseting line segments with Voronoi edges the numberof ritial points that must be onsidered is O(1) per line segment. However, nogeodesi Voronoi diagram for line segments has been published to our knowledge,so the below algorithm essentially omputes geodesi distanes between all pairs
a ∈ A, b ∈ B of line segments.Theorem 7. δH(A, B) for sets of line segments A, B inside a simple polygon Pan be omputed in O(k+N2 log k) time and O(k+N) spae, where N is the largerof the omplexities of A and B and k is the omplexity of P .Proof. Consider �rst the simple ase of omputing δ̃H(ab, cd) between two linesegments. δ̃H(ab, cd) is exatly the minimum value of Hab, cd, where Hab, cd is adistane funtion de�ned in setion 2.6 for the hourglass Hab, cd.The task is to �nd the minimum value of Hab, cd for any type of hourglass
Hab, cd. For an interseting hourglass, (f. 2.3), learly δ̃H(ab, cd) = 0 sine ab and
cd interset.For a losed hourglass, Hab, cd equals the ↓↑-bitone distane funtion Fab, Ma

(f.setion 2.6). The minimum value of Fab, Ma
is available in O(log k) time by Lemma



GEODESIC FRÉCHET AND HAUSDORFF DISTANCE INSIDE A SIMPLE POLYGON 236 one the position of Ma is known. Ma ∈ cd (f. setion 2.6) is the position on
cd where the minimum distane in Fa, cd ours. Therefore, it an also be found in
O(log k) time by Lemma 6.An open hourglass is easier to handle one it is split into three piees de�ned by
Ma, Mb ∈ cd as demonstrated in setion 2.6. Ma an be found in O(log k) time asdesribed above, and Mb an be found similarly.For the open hourglassHab, cd, Hab, cd is the onatenation of distane funtionsfor two funnels and an L2-setion (f. setion 2.6). The minimum value for Hab, cdan be found in O(log k) time by simply �nding the minimum distane for bothfunnels and returning the smaller value. The L2-setion need not be onsidered sineits distane funtion is monotone. This means that given any two line segments aband cd, δ̃H(ab, cd) an be omputed in O(log k) time after preproessing.

δ̃H(A, B) an be omputed for sets A, B as follows. For a single line segment
a ∈ A ompute the minimum distane to every b ∈ B. This yields the distane to
a's nearest neighbor in B in O(N log k) time. Repeating this step for every a ∈ Aand returning the supremum of all the nearest neighbor distanes yields δ̃H(A, B)in O(N2 log k) time after O(k) preproessing (see [13℄) for shortest paths.Only O(k) spae is needed for preproessing but learly the simple polygon andsets A, B must be stored, so the spae requirement is O(k + N). δ̃H(B, A) and
δH(A, B) have idential time and spae bounds.

⊓⊔6. ConlusionTo ompute the geodesi Fréhet distane between two polygonal urves insidea simple polygon, we have proven that a geodesi ell has at most one free spaeregion R and that R must be monotone. It follows from the monotoniity of R thatreahability information an be propagated through a ell in onstant time onethe ell boundaries are known. By extending the shortest path algorithm of [11℄and [13℄, the boundaries of a single ell an be omputed in logarithmi time, andthis approah leads to an e�ient algorithm to solve the geodesi Fréhet deisionproblem.A randomized algorithm based on ounting red-blue intersetions inside an in-terval [α, β] is used to solve the geodesi Fréhet optimization problem in lieu of thestandard parametri searh approah. The randomized algorithm is also a pratialalternative to parametri searh for the non-geodesi Fréhet optimization problemin the plane.These results allow omputing the geodesi Fréhet distane between two polygo-nal urves A and B inside a simple bounding polygon P in O(k+(N2 log kN) logN)expeted time, where N is the larger of the omplexities of A and B and k is theomplexity of P . In the worst-ase, both the randomized algorithm and parametrisearh inlude ubi terms. In the expeted ase, the randomized algorithm is anorder of magnitude faster beause a straightforward parametri searh (even withCole's [8℄ optimization) would need to sort O(kN2) values.The beauty of the geodesi Fréhet deision problem is that ell boundaries anbe omputed in the same asymptoti time that it takes to ompute a shortest path.By [13℄, the algorithm used to ompute these shortest paths is optimal. Therefore,it is unlikely that a single ell's boundaries an be omputed asymptotially faster
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