
Department of Computer Science, UTSA
Technical Report: CS-TR-2008-007

Energy Management for Periodic Real-Time Tasks
with Variable Assurance Requirements∗

Dakai Zhu, Xuan Qi Hakan Aydin
Department of Computer Science Department of Computer Science

University of Texas at San Antonio George Mason University
San Antonio, TX, 78249 Fairfax, VA 22030

{dzhu,xqi}@cs.utsa.edu aydin@cs.gmu.edu

Abstract

Reliability-aware power management (RAPM) schemes, which consider the negative effects of

voltage scaling on system reliability, were recently studied to save energy while preserving system

reliability. However, in previous RAPM schemes, real-time tasks are occasionally treated unfairly

and the selected jobs are determined in greedy fashion. In this paper, we study static flexible RAPM

schemes for real-time periodic tasks, which consider the assurance requirements of tasks and man-

ages a subset of jobs for every task accordingly. The problem is shown to be NP-hard in the strong

sense and the upper bounds on energy savings are discussed. For a special case of tasks’ recovery

patterns, a pseudo-polynomial static scheme is proposed. Dynamic schemes that explore dynamic

slack for better energy savings and reliability enhancement are also discussed. The schemes are

evaluated extensively through simulations. The results show that, compared to the previous RAPM

schemes, the new flexible RAPM schemes can guarantee the assurance requirements and provide

fairness for all tasks, but at the cost of decreased energy savings. However, when combining with

dynamic schemes, such cost can be effectively recovered.

∗A preliminary version of this paper appeared in IEEE RTCSA 2007. This work was supported in part by NSF
awards CNS-0720651, CNS-0720647 and NSF CAREER Award CNS-0546244.

1

1 Introduction

Energy has been recognized as a first-class resource in computing systems, especially for battery-

operated embedded devices that have limited energy budget. To manage power consumption in such

systems, many energy efficient hardware and software techniques have been proposed and power

aware computing has recently become an important research area. As a common strategy for saving

energy, system components are operated at low-performance (thus low-power) states, whenever

possible. For instance, through dynamic voltage and frequency scaling (DVFS) [26], the supply

voltage and operating frequency of modern processors can be scaled down to save energy.

However, with lower processor operating frequencies (i.e., slower processing speeds), applica-

tions will generally take more time and run longer. For real-time systems, where applications may

have stringent timing constraints and the consequences of missing a deadline can be catastrophic,

special provisions are needed when exploring DVFS for energy savings. In the recent past, exploit-

ing the available static and/or dynamic slack in the system, several research studies explored the

problem of minimizing energy consumption while meeting all the deadlines for various real-time

systems [3, 19, 23].

More recently, the negative effect of DVFS on system reliability due to increased transient fault

rates has been studied [32]. With the continued scaling of CMOS technologies and reduced de-

sign margins for higher performance, it is expected that, in addition to the systems that operate

in electronics-hostile environments (such as those in outer space), practically all digital computing

systems will be much more vulnerable to transient faults [9]. Hence, for safety-critical real-time

systems (such as satellite and surveillance systems) where reliability is as important as energy effi-

ciency, reliability-cognizant energy management becomes a necessity.

There has been some recent work that addressed energy efficiency and system reliability simul-

taneously [8, 18, 25, 28, 33]. However, most of the previous research either focused on tolerating a

fixed number of faults [8, 18, 25, 33] or assumed constant transient fault rate [28].

Reliability-Aware Power Management As an initial study, focusing on tolerating transient faults,

we have proposed the concept of reliability-aware power management (RAPM) [29]. Taking the

negative effects of DVFS on system reliability (due to increased transient fault rates at lower supply

voltages [32]) into consideration, for reliability preservation, the central idea of RAPM schemes

is to reserve a portion of available slack to schedule one recovery for any task to be scaled

down before utilizing the remaining slack for energy management. This is different from the

2

ordinary power management schemes that exploit all the available (dynamic or static) slack for

energy savings through DVFS techniques. The recovery jobs are invoked for execution only if their

corresponding scaled tasks fail, at the maximum processing speed. It has been proved that, with the

help of recovery jobs, the RAPM scheme can guarantee to preserve the system reliability while still

obtaining energy savings using the remaining slack, regardless of different fault rate increases and

scaled processing speeds [29].

The RAPM scheme has been extended to consider multiple real-time tasks sharing a common

deadline [30] as well as periodic real-time tasks scheduled by earliest-deadline-first (EDF) [31] and

rate-monotonic (RMS) scheduling algorithms [34]. Although the static task-level RAPM schemes

for periodic real-time tasks can achieve significant energy savings while preserving system reliabil-

ity, a few problems remain open.

It was not clear that, instead of managing a subset of tasks (i.e., scheduling corresponding re-

covery tasks and scaling down the execution of all their jobs), whether managing a subset of jobs

from every task could further improve energy savings. Moreover, by selecting tasks for management

in greedy fashion, the task-level schemes treat tasks unequally/unfairly. Considering that the relia-

bility of any scaled job is actually enhanced with the help of the scheduled recovery job [29], the

jobs of selected tasks will have enhanced reliability while the reliability for the jobs of other tasks

remains unchanged. For applications where it is important to improve the quality of assurance for

all tasks simultaneously (e.g., satellite signal processing in GPS applications), excluding any task

from RAPM schemes may not be desired.

In this paper, considering different quality of assurance requirements (e.g., reliability enhance-

ments) of individual tasks, we study preemptive EDF-based flexible RAPM schemes for periodic

real-time tasks. Compared to the previous task-level RAPM schemes, the new schemes manage a

subset jobs for every task according to individual tasks’ assurance requirements. Simulation results

show the effectiveness of the proposed schemes on guaranteeing the assurance requirements of all

tasks while achieving considerable amount of energy savings.

The contributions of this paper are summaried as follows:

• Establishment of an upper bound of energy savings for static RAPM schemes;

• Based on the idea of skip task model [17], the necessary as well as sufficient conditions for the

feasibility test of periodic real-time tasks with variable assurance requirements are presented;

• For tasks with variable assurance requirements, the static RAPM problem is proved to be

NP-hard;

3

• Both static (for a special case) and dynamic RAPM schemes are proposed and evaluated;

We first elaborate on an upper bound of energy savings for static RAPM schemes. For the feasi-

bility of the task set considered, we discuss the necessary condition as well as sufficient condition

using tasks’ utilization information. Then, based on the idea of the skip task model [17], we for-

mally formulate the RAPM problem and show that the problem is NP-hard in its general setting.

For a special pattern of required recovery jobs, we propose one pseudo-polynomial static scheme.

Exploring dynamic slack, dynamic RAPM schemes are also discussed to further improve system

performance on both energy efficiency and reliability.

In what follows, Section 2 presents a motivational example and Section 3 presents system models.

In Section 4, we address the static flexible RAPM problem, which is shown to be NP-hard in the

strong sense, and propose a pseudo-polynomial scheme for a special case after presenting the upper

bounds on energy savings. Dynamic RAPM schemes are further discussed in Section 5. Simulation

results are presented and discussed in Section 6. Section 7 concludes the paper.

2 Motivational Example

f

100 20 30

time

6040 50

J J J JJ J
J

J JJ
B B B B B B B

1,1 2,1 3,1
4,1 5,1

1,2 2,2 3,2
4,2

1,3 2,3 3,3
5,2

3,32,3
B

1,33,22,21,23,12,11,1 J J J
B

a. Task-level static RA-PM with task τ1 [31]
f

100 20 30

time

6040 50

J J
B B

1,1 2,1
2,11,1 J

3,1 J
4,1

B
4,1 J

5,1 J
1,2

B
1,2

J
2,2

3,2
J

B
3,2

J
4,2

J
1,3 J

2,3

B
2,3 J

3,3

B
3,3

B
5,2J

5,2

b. Selecting jobs from every task for fairness.
f

100 20 30

time

6040 50

J
1,1

1,1
B

J
2,1

B
2,1 J

3,1

B
3,1 J

4,1

B
4,1 J

5,1

B
5,1 J

1,2

B
1,2 J

2,2

B
2,2 J

3,2

B
3,2 J

1,3
J J

2,3 3,3
J J

4,2 5,2

c. The deeply-red recovery pattern.

Figure 1. Motivational Example

Before formally presenting the problem that will be addressed in this work, we first consider an

example. For a task set with five periodic tasks {τ1(2, 20), τ2(2, 20), τ3(2, 20), τ4(3, 30), τ5(3, 30)},

where the first number associated with each task is its worst case execution time (WCET) and the

4

second number is the task’s period, the system utilization is 0.5 and the spare CPU capacity (i.e.,

static slack) is 0.5 (i.e. 50%). The slack can be used for both energy and reliability management.

In the task-level static RAPM scheme [31], for any task that is selected for management, a recovery

task will be created with the same timing parameters as the managed task. When the managed task

is scaled down using the remaining slack, the recovery task will provide necessary recovery jobs to

preserve system reliability.

In the example, although the spare CPU capacity is enough to create a recovery task for every task,

doing so leaves no slack for energy management and no energy savings can be obtained. Suppose

that, the static task-level RAPM scheme selects three tasks (τ1, τ2 and τ3) for management, after

creating the required recovery tasks and scaling down the jobs of the managed tasks [31]. Figure 1a

shows the schedule for the interval of [0, 60]. In the figures, the X-axis represents time, the Y-axis

represents CPU processing speed (e.g., cycles per time units) and the area of the task box defines the

amount of work (e.g., number of CPU cycles) needed to execute the task. Here, 30% CPU capacity

is used to accommodate the newly created recovery tasks and the remaining spare CPU capacity

(which is 20%) is exploited to scale all jobs of the three managed tasks to the frequency of 0.6fmax

(fmax is assumed to be the maximum frequency).

Note that, with the recovery tasks, all scaled jobs of the three managed tasks have a recovery job

each within their deadlines and system reliability will be preserved [31]. However, such a greedy

selection of tasks in the previous RAMP scheme does not consider different requirements of indi-

vidual tasks and the task-level selection may result in unfairness. For the case shown in Figure 1a,

although the reliability of the three managed tasks is enhanced due to the scheduled corresponding

recovery tasks, the reliability for the other two tasks (τ4 and τ5) remains unchanged. When the

overall performance of a real-time system is limited by the task with the lowest quality, such as

signal processing for the multiple channels in satellite/GPS/ATR applications [22], improving the

quality-of-assurance for every task simultaneously is necessary.

For the above example, instead of managing only jobs of tasks τ1, τ2 and τ3, we can manage

two out of three jobs for these three tasks and one out of two jobs for other two tasks. Through

wise selection of jobs for each task (e.g., the first two jobs of task τ1, the first and the third jobs

of task τ2, the second and the third jobs of task τ3, the first job of task τ4 and the second job of

task τ5), Figure 1b shows the schedule within the interval considered. Here, after scheduling the

recovery jobs, all the selected jobs are also scaled to the frequency of 0.6fmax and the same energy

savings is obtained as in Figure 1a. Moreover, tasks are fairly treated and the reliability of all tasks

is simultaneously enhanced.

5

However, as discussed in Section 4, finding the optimal subset of jobs for each task to maximize

energy savings while ensuring fairness and/or meeting different assurance requirements for individ-

ual tasks is not trivial.

3 System Models

3.1 Task Model

We consider a set of independent periodic real-time tasks {τ1, . . . , τn}, where task τi (i = 1, . . . , n)

is represented by its WCET ci and period pi. Considering the variable speed processor, it is assumed

that ci is given under the maximum processing frequency fmax. Moreover, for simplicity, we assume

that the execution time of a task scales linearly with the processing speed1. That is, at the scaled

frequency f , the execution time of task τi is assumed to be ci · fmax

f
. The utilization of task τi is

defined as ui = ci

pi
and U =

∑n
i=1 ui is the system utilization. We further assume that tasks are

synchronous and the first job of every task arrives at time 0. The j’th job Ji,j of task τi arrives at

time (j − 1) · pi and has the deadline of j · pi (j ≥ 1).

In this work, following the idea in the skip task model [7, 17], we use a single skip parameter

ki to present the assurance requirement for task τi. It means that, for the purpose of reliability

enhancements, (ki− 1) out of any consecutive ki jobs of task τi need to have recovery jobs and only

such jobs can be scaled down to save energy. Here, ki can range from 1 to ∞. When ki = 1, no

job of τi needs a recovery job and cannot be scaled down. With higher values of ki, more jobs need

recoveries and better reliability enhancement can be obtained for task τi. For the case of ki = ∞,

all jobs of τi must have recovery jobs. For the example in Figure 1b, the assurance parameters are

k1 = k2 = k3 = 3 and k4 = k5 = 2 for the five tasks, respectively.

Although it is possible to adopt two numbers to represent the assurance requirement for each task,

as in the general firm (i.e., (m, k)) task model [12, 21], we underline that, by enforcing the minimal

interval between two consecutive jobs without recoveries, the skip assurance model describes the

changes in quality of assurance more smoothly. Moreover, as shown in Section 4, even with the skip

assurance model, the static flexible RAPM problem is found to be intractable.

Note that the assurance parameters for tasks can be determined following various rules (such as

design requirements, importance/criticality of tasks and/or fairness). However, the discussion on

1A number of studies have indicated that the execution time of tasks does not scale linearly with reduced processing
speed due to accesses to memory [24] and/or I/O devices [5]. However, exploring the full implications of this observation
is beyond the scope of this paper and is left as our future work.

6

how to choose the best assurance parameters for tasks is beyond the scope of this paper and will be

addressed in our future work. In this paper, for a set of tasks with given assurance requirements,

we focus on the flexible RAPM schemes that maximize energy savings while ensuring such require-

ments.

3.2 Energy Model

We adopt the system-level power model proposed in [32], where the power consumption of a

computing system at frequency f (≤ fmax; and corresponding supply voltage) is given by:

P (f) = Ps + ~(Pind + Pd) = Ps + ~(Pind + Ceffm) (1)

Here, Ps is the static power, Pind is the frequency-independent active power, and Pd is the frequency-

dependent active power. The effective switching capacitance Cef and the dynamic power exponent

m (in general, 2 ≤ m ≤ 3) are system-dependent constants [6] and f is the frequency. ~ = 1 when

the system is active (i.e., computation is in progress); otherwise, ~ = 0.

Despite its simplicity, the above power model captures the essential power components in a sys-

tem. Moreover, from the above equation, one can easily find the minimal energy-efficient frequency

fee = m

√
Pind

Cef ·(m−1)
[32]. Consequently, we assume that the frequency is never reduced below the

threshold fee for energy efficiency. Moreover, normalized frequencies are used (i.e. fmax = 1.0)

and we assume that the frequency can vary continuously2 from fee to fmax.

3.3 Fault Model

Considering that transient faults occur much more frequently than permanent faults [14], espe-

cially with the continued scaling of CMOS technologies and reduced design margins [9], we focus

on transient faults in this paper and explore backward recovery techniques to recovery them. It is

assumed that the faults are detected using sanity (or consistency) checks at the completion of a job’s

execution, and if needed, the recovery task is dispatched, in the form of re-execution [20].

Assuming that transient faults follow Poisson distribution [27], the average transient fault rate for

systems running at frequency f (and corresponding supply voltage) can be modeled as [32]:

λ(f) = λ0 · g(f) (2)

2For discrete frequency levels, we can use two adjacent levels to emulate the execution at any frequency [13].

7

where λ0 is the average fault rate corresponding to the maximum frequency fmax. That is, g(fmax) =

1. Considering the negative effect of DVFS on the transient fault rate, in general, there is g(f) > 1

for f < fmax [32].

3.4 Problem Description

We consider a set of real-time tasks to be executed on a uni-processor system according to the

preemptive earliest deadline first (EDF) scheduling policy. For a task set with system utilization

U , the spare CPU capacity (i.e., static slack) will be sc = 1 − U . To guarantee the assurance

requirements and achieve the desired reliability, the static slack will be first used to schedule the

required recovery jobs for every task; then, the remaining static slack (if any) can be used to scale

down only the jobs that have recoveries, for energy savings.

Simple Manageability Conditions: Considering the assurance requirements of tasks, the man-

ageability of a task set is defined as there exists a schedule in which all the required recovery jobs

can be accommodated within the timing constraints. When the system utilization of a task set is

U ≤ 0.5, the spare capacity will be large enough to schedule a recovery task for every task [31].

That is, a recovery job can be scheduled for each and every job of all tasks within the timing con-

straints, regardless of different assurance requirements for tasks. Therefore, U ≤ 0.5 is the sufficient

condition for the manageability of a set of tasks with assurance requirements.

However, without taking the specific assurance requirements of tasks into consideration, schedul-

ing a recovery task for every task may not be the most energy efficient approach as shown in the

above example. When more slack is used to schedule the unnecessary recovery jobs, less slack

is left for energy savings. Define the augmented system utilization of the task set with assurance

requirements as:

AU = U +
n∑

i=1

(ki − 1) ∗ ci

ki ∗ pi

(3)

where the second summation term denotes the workload from the required recovery jobs. It is easy

to find out that, if AU > 1, the spare capacity will not be enough to schedule the required recovery

jobs for all tasks and the task set is not manageable. Therefore, the necessary condition for a task

set to be manageable is AU ≤ 1.

8

Problem Statement In this work, for a set of tasks with assurance requirements where AU ≤ 1,

the problems to be addressed are: a.) how to effectively exploit spare CPU capacity (i.e., static

slack) to maximize the energy savings while guaranteeing the assurance requirement for each

task; and b.) how to efficiently use the dynamic slack that can be generated at run-time, to

further improve energy savings and/or system reliability.

4 Static Flexible RAPM Schemes

Note that, there are two steps involved in the static flexible RAPM problem. First, considering

the assurance requirements of tasks, the subset of jobs to which a recovery job for each will be

allocated needs to be determined. If all the required recovery jobs can be accommodated within the

timing constrains, we say that the task set is schedulable with such job selection. Second, for the

schedulable job selection, the scaled frequencies need to be determined for the jobs with recoveries

to save energy. Here, we can see that the schedulability (as well as the potential energy savings)

of a task set directly depends on, for each task, the selection of jobs to which recovery jobs will be

allocated.

4.1 Definitions

Recovery Patterns: Given a real-time task τi (i = 1, . . . , n) with the assurance requirement ki,

the recovery pattern is defined as a binary string of length ki: RPi(ki) =“r0r1 · · · rki−1”. Here, the

value of rj (j = 0, . . . , ki − 1) is either 0 or 1, and
∑

rj = ki − 1. Consider the first ki jobs of

task τi. If rj−1 = 1 (j = 1, . . . , ki), then the j’th job Ji,j of task τi needs a recovery; otherwise, if

rj−1 = 0, no recovery is needed for Ji,j . For simplicity, we assume that the recovery pattern will

be repeated for the remaining jobs of task τi. That is, the (j + q · ki)’th job of task τi has the same

recovery requirement as job Ji,j , where q is a positive integer. By repeating the recovery pattern, the

assurance requirement of a task will be satisfied.

For the example in Figure 1b, the recovery patterns for the five tasks are: RP1(3) =“110”,

RP2(3) =“101”, RP3(3) =“011”, RP4(2) =“10” and RP5(2) =“01”. Note that, in that exam-

ple, these recovery patterns provide the best energy management opportunity and lead to the max-

imum energy savings. However, as shown in Section 4.2, finding such recovery patterns and the

corresponding scaled frequencies is not trivial.

9

Augmented Processor Demand: For a set of given recovery patterns for tasks with assurance

requirements, as the first step, we need to find out whether the task set is manageable (i.e., the

required recovery jobs can be scheduled within timing constraints) or not. For such purpose, we first

re-iterate the concept of processor demand and the fundamental result in the feasibility analysis of

task systems scheduled by preemptive EDF [4, 16]. Then, the concept and the feasibility analysis

are extended accordingly.

Definition 1 The processor demand of a real-time job set Φ in an interval [t1, t2], denoted as

hΦ(t1, t2), is the sum of computation times of all jobs in Φ with arrival times greater than or equal

to t1 and deadlines less than or equal to t2.

Theorem 1 ([4, 16]) A set of independent real-time jobs Φ can be scheduled (by EDF) if and only

if hΦ(t1, t2) ≤ t2 − t1 for all intervals [t1, t2].

For a set of tasks with assurance requirements and given recovery patterns RPi(ki) (i = 1, . . . , n),

by incorporating the workload from the required recovery jobs, the augmented processor demand in

the interval [t1, t2] can be formally defined as:

APD(t1, t2) =
n∑

i=1

b∑
j=a

(1 + rx(i,j))ci (4)

where

a =

⌈
t1
pi

⌉
+ 1 (5)

b =

⌊
t2
pi

⌋
(6)

x(i, j) = (j − 1) mod ki (7)

That is, the augmented processor demand APD(t1, t2) includes the workload of all jobs of the tasks,

as well as the required recovery jobs, with arrival times greater than or equal to t1 and deadlines less

than or equal to t2.

Note that, when a job requires a recovery job according to the task’s assurance requirement and

recovery pattern, it seems like the worst-case workload of that job is doubled. Following the similar

reasoning as to the one in [2], we can obtain the following result.

10

Theorem 2 For a set of real-time tasks with assurance requirements and given recovery patterns

RPi(ki) (i = 1, . . . , n), all jobs and the required recovery jobs of the tasks can be scheduled by

preemptive EDF if and only if APD(t1, t2) ≤ t2 − t1 for all the intervals [t1, t2].

Define the super-period of the task set considered as SP = LCM(k1p1, . . . , knpn), where the

function LCM() denotes the least common multiple (LCM) of all the numbers. It is easy to see

that the recovery patterns of tasks may cross LCM(p1, . . . , pn) and all recovery patterns will repeat

after the super-period SP . Therefore, to check the schedulability of a set of real-time tasks with

assurance requirements and given recovery patterns, according to Theorem 2, we need to check

APD(t1, t2) ≤ t2 − t1 for all intervals [t1, t2] where 0 ≤ t1, t2 ≤ SP .

Note that, if APD(t1, t2) < t2 − t1 for all the intervals [t1, t2], it means that more slack exists

in the schedule and can be used to scale down the jobs with recoveries (for reliability purpose) to

save energy. Considering the scaled execution of some jobs, the augmented processor demand can

be further extended as:

EAPD(t1, t2) =
n∑

i=1

b∑
j=a

(
1

fi,j

+ rx(i,j)

)
ci (8)

where fi,j is the processing frequency for job Ji,j . Here, the energy consumption of job Ji,j will be

E(i, j) = P (fi,j)
ci

fi,j
, in which P (f) is defined as in Equation 1.

With these definitions, the static flexible RAPM problem considered in this work can be formally

stated as: for a set of real-time tasks with assurance requirements, find the recovery patterns and the

scaled frequencies so as to:

Minimize
∑

i∈[1,n],j∈[1,SP/pi]

E(i, j) (9)

subject to

ki−1∑
j=0

rj ≥ ki − 1, i = 1, . . . , n (10)

fi,j = fmax, if rx(i,j) = 0 (11)

fi,j ≤ fmax, if rx(i,j) = 1 (12)

EAPD(t1, t2) ≤ t2 − t1, ∀t1, t2 ∈ [0, SP] (13)

11

where the first condition confines the skip model recovery patterns; the second and third condition

states that only jobs with recoveries can be scaled down; and the last condition ensures that, with the

recovery patterns and scaled frequencies, the task set is schedulable.

Note that, for a set of tasks with assurance requirements, even with AU ≤ 1, it is still possible that

no schedule exists to be able to accommodate the required recovery jobs within timing constraints.

That is, the task set is not manageable with the given assurance requirements. In this case, it is

possible to adjust the assurance requirements of tasks (e.g., by appropriately decreasing ki for task

τi) to make them feasible. However, exploring such possibility is well beyond the scope of this

paper.

4.2 Intractability of the Static Problem

Note that, for a real-time task τi with assurance requirement ki, there are ki different recovery

patterns. Therefore, for the task set considered, the number of different combinations of tasks’

recovery patterns is
∏n

i=1 ki. To find the optimal solution that maximizes energy savings, all these

combinations of recovery patterns for tasks need to be examined, and scaled frequencies need to be

determined. In fact, finding the optimal solution for the static flexible RAPM problem turns out to

be intractable:

Theorem 3 For a periodic real-time task set where tasks have individual assurance requirements,

the static flexible RAPM problem is NP-hard, in the strong sense.

The proof of this problem is provided in the Appendix. We underline that, due to this result, finding

the optimal solution even in pseudo-polynomial time seems to be unlikely (unless NP = P).

4.3 Upper Bounds on Energy Savings

Considering the intractability of the static RAPM problem, instead of focusing on designing

heuristic/approximation algorithms, we first discuss the upper bounds on energy savings. Then,

for a special case of the recovery patterns for the tasks, a pseudo-polynomial scheme to find a single

scaled frequency for the jobs with recoveries is presented in Section 4.4.

For a task set with system utilization U and spare capacity sc = 1−U , suppose that the utilization

for the managed workload is X (≤ min{U, sc}). After accommodating the required recovery jobs,

the remaining spare capacity (i.e., sc − X) could be used to scale down the managed workload

to save energy. Considering the convex relation between energy and processing frequency [6], to

12

minimize the energy consumption, the workload should be scaled down uniformly (if possible) and

the scaled frequency will be f(X) = max{fee,
X

X+(sc−X)
}= max{fee,

X
sc
}. Without considering the

energy consumed by recovery jobs (which are only executed when the corresponding scaled jobs

fail with a very small probability), the amount of total fault-free energy consumption of the task set

within LCM can be calculated as:

E(X) = LCM · Ps + LCM(U −X)(Pind + cef · fm
max)

+LCM · X

f(X)
(Pind + cef · f(X)m) (14)

where the first part is the energy consumption due to static power, the second part captures the energy

consumption of the unscaled workload, and the third part represents the energy consumption of the

managed workload.

An Absolute Upper Bound As shown in [31], by differentiating Equation (14), E(X) is mini-

mized when

Xopt = min

{
U, sc ·

(
Pind + Cef

m · Cef

) 1
m−1

}
(15)

Therefore, without considering the assurance requirements for individual tasks, the absolute upper

bound on the energy savings will be:

ESabs−upper = E(0)− E(Xopt). (16)

where E(0) denotes the energy consumption when no task is managed (i.e., all tasks are executed

at fmax). This bound actually provides an upper limit on energy savings for all possible RAPM

schemes (including the previous task-level scheme [31] and the flexible scheme proposed in this

paper).

K-Upper Bound with Assurance Parameters Note that, the previous upper bound relies only on

system utilization. Taking the assurance parameters of tasks into consideration, we can get a tighter

upper bound on the energy savings for the flexible scheme. Note that, for a task set where each task

has its assurance requirement and a subset of its jobs need recoveries, the workload from the such

13

jobs (which can be scaled down for saving energy) is:

Uassurance =
n∑

i=1

(ki − 1) ∗ ci

ki ∗ pi

(17)

Assuming that, after accommodating the required recovery jobs, all such jobs are scaled down uni-

formly using the remaining slack, a tighter upper bound on the energy savings within LCM can be

given as:

ESk−upper = E(0)− E(Uassurance) (18)

4.4 Deeply-Red Recovery Pattern

In the weakly-hard real-time scheduling literature, the “deeply-red” execution pattern has been

adopted widely [7, 17]. There are two main reasons: first, if a task set is schedulable under the

deeply-red execution pattern, it will be schedulable for any other execution patterns; second, the

simplified feasibility test can be used. Instead of checking the processor demand between any in-

terval from time 0 to the super-period SP , only the intervals that start at time 0 and end at a time

instance not larger than LCM(pi, . . . , pn) need to be considered.

Following the same idea, in this work, the “deeply-red” recovery pattern will be used and is

defined as the one with leading 1’s followed by a 0. For instance, for the task τi with assurance

requirement ki, the first (ki − 1) characters of its recovery pattern RPi(ki) are ′1′’s and the last

character is a ′0′. Following the same line of reasoning as in [7, 17], and using the augmented

processor demand function APD() defined in Equation 4, we have:

Theorem 4 For a real-time task set, if all tasks with assurance requirements adopt the deeply-red

recovery pattern, the task set can be scheduled by preemptive EDF if and only if APD(0, L) ≤ L

for ∀L, 0 ≤ L ≤ LCM(p1, . . . , pn).

Define the manageable workload for a set of tasks with assurance requirements in the interval

[t1, t2] as:

MW (t1, t2) =
n∑

i=1

b∑
j=a

rx(i,j)ci (19)

where a, b and x(i, j) are the same as defined in Equations (5), (6) and (7), respectively. If

APD(0, L) < L, more slack exists and can be used to scale down the execution of the jobs with

14

recoveries to save energy. Assuming that all manageable jobs are scaled down uniformly [1], the

scaled frequency fdr can be calculated as:

fdr = max

{
MW (0, L)

MW (0, L) + (L− APD(0, L))

}
(20)

where 0 < L ≤ LCM(p1, . . . , pn). Note that, when evaluating fdr, it is sufficient to consider L

values that correspond to period boundaries of tasks, which will take pseudo-polynomial time.

For the example shown in Figure 1c, where the deeply-red recovery pattern is used for every

task, the scaled frequency can be calculated as 9
11

. Here, we can see that, although the deeply-red

recovery pattern simplifies the feasibility test, the required recovery jobs can “clash” (i.e. need to

be scheduled during the same time interval). Therefore, the single scaled frequency calculated can

be pessimistic. The performance of this simplified scheme is evaluated and compared to the upper

bounds on energy savings in Section 6.

5 Dynamic Online RAPM Schemes

Note that, the statically scheduled recovery jobs are executed only if their corresponding scaled

jobs fail. Otherwise, the CPU time reserved for those recovery jobs is freed and becomes dynamic

slack at run-time. Moreover, it is well-known that real-time tasks typically take a small fraction of

their WCETs [10]. Therefore, significant amount of dynamic slack can be expected at run time,

which should be exploited to further save energy and/or enhance system reliability.

In [31], an effective dynamic slack management mechanism, called wrapper-task approach, has

been studied. In this approach, wrapper tasks are used to represent dynamic slack generated at run-

time. When dynamic slack is reclaimed or consumed, the corresponding wrapper task(s) will be

destroyed, which prevents the slack from being reused by high priority task instances later. There-

fore, the slack reserved for recovery blocks will be conserved across preemption points, which is

essential for reliability preservation in the RA-PM schemes.

However, in the previous dynamic RAPM algorithm using wrapper-tasks, task sets are assumed to

have system utilization of U = 1 and no recovery job is scheduled statically [31]. Therefore, all jobs

of tasks arrive at the maximum frequency fmax, and are scaled down only if the available dynamic

slcak is enough to schedule the necessary recovery jobs. Combining with the static flexible RAPM

scheme, where the required recovery jobs are statically scheduled for a subset jobs of every task and

the scaled frequency is determined accordingly, we can extend the dynamic algorithm as shown in

Algorithm 1. Note that, when applying the dynamic algorithm to a statically managed task set, the

15

Algorithm 1 Flexible Dynamic RAPM Algorithm
1: tpast is the elapsed time since last scheduling point. J and WT represent the current job and wrapper-

task, respectively (if there is no such a job or wrapper-task, they have a NULL value). J.rem and
WT.rem denote the remaining time requirements; J.d and WT.d are the deadlines.

2: Step 1:
3: if (J!=NULL and J.rem− tpast > 0) {
4: J.rem − = tpast;//job was preempted or completes
5: if (J completes)
6: CreateWT(J.rem, J.d);//slack of early completion
7: else Enqueue(J , Ready-Q);}
8: if (WT !=NULL and WT.rem− tpast > 0) {
9: WT.rem − = tpast; Enqueue(WT , WT-Queue);}

10: if (WT !=NULL and J!=NULL)
11: CreateWT(tpast, J.d);//push forward slack;
12: if (J is scaled and succeeds){
13: RemoveRecoveryJob(J ,Ready-Q);
14: CreateWT(J.c, J.d);//slack from recovery job;}
15: Step 2:
16: for (all newly arrived job NJi,j){
17: x(i, j) = (j − 1) mod ki;
18: if (rx(i,j) == 1) {
19: CreateRecoveryJob(NJi,j);NJi,j .f = fi,j ;
20: NJi,j .rem = ci

fi,j
;NJi,j .scaled = true;

21: }else{NJi,j .scaled = false;
22: NJi,j .f = fmax;NJi,j .rem = ci;}
23: Enqueue(NJi,j , Ready-Q);}
24: Step 3://in the following, J and WT will represent the next job and wrapper-task to be processed,

respectively;
25: J=Dequeue(Ready-Q);
26: if (J!=NULL) ReclaimSlack(J , WT-Queue);
27: WT=Header(WT-Queue);
28: if (J!=NULL){
29: if (WT ! = NULL and WT.d < J.d)
30: //WT wraps J’s execution (a timer is needed)
31: WT = Dequeue(WT-Queue);
32: else WT = NULL;//normal execution of J
33: Execute(J);}
34: else if (WT !=NULL)
35: WT = Dequeue(WT-Queue);//WT executes no-ops

task-level RAPM scheme can be viewed as a special case of the flexible scheme, where the selected

tasks have assurance requirements of k = ∞ with recovery patterns of all 1’s and other tasks have

k = 0 with recovery patterns of all 0’s.

Here, the task set is assumed to be schedulable under preemptive EDF with the given recovery

patterns and scaled frequencies that are determined by the static RAPM schemes. The major differ-

16

ence between Algorithm 1 and the dynamic scheme in [31] comes from Step 2 (lines 15 to 23). In the

new algorithm, according to the recovery pattern of a task (lines 17 and 18), if needed, the recovery

job is created at the time of a new job’s arrival and the scaled frequency is set correspondingly (line

19).

For the detailed discussion on other part of the algorithm, the interested readers are referred

to [31]. However, we would like to emphasize that the dynamic slack reclamation through the

management of wrapper tasks will not violate any timing constraint that is statically guaranteed.

6 Simulation Results and Discussions

To evaluate the performance of the proposed schemes, we developed a discrete event simulator

using C++. In the simulations, we implemented the simplified flexible static RAPM scheme (Flex-

ible) that assumes that all tasks take the deeply-red recovery pattern. For simplicity, if a task set

is not manageable with the deeply-red recovery pattern, we assume that no recovery jobs will be

scheduled and no power management will be applied (i.e., all tasks will be executed at fmax). The

dynamic RAPM scheme is also implemented. In addition, we consider two different schemes for

comparison. First, the scheme of no power management (NPM), which does not schedule any re-

covery job and executes all tasks/jobs at fmax while putting system to sleep states when idle, is used

as the baseline. Second, for the task-level static RAPM scheme, we consider the smaller utilization

task first heuristic (SUF) [31].

The parameters employed in the simulations are similar to the ones used in [31]. Focusing on

active power and assuming Ps = 0, Pind = 0.05, Cef = 1 and m = 3, the energy efficient frequency

can be calculated as fee = 0.29 (see Section 3). Moreover, the transient faults are assumed to follow

the Poisson distribution with an average fault rate of λ0 = 10−6 at the maximum frequency fmax

(and corresponding supply voltage). For the fault rates at lower frequencies/voltages, we adopt the

exponential fault rate model g(f) = λ010
d(1−f)
1−fee and assume that d = 2 [32]. That is, the average

fault rate is 100 times higher at the lowest frequency fee (and corresponding supply voltage).

We consider synthetic real-time task sets where each task set contains 10 periodic tasks. The

periods of tasks (p) are uniformly distributed within the range of [10, 20]. The WCET (c) of a task

is uniformly distributed in the range of 1 and its period. Finally, the WCETs of tasks are scaled by

a constant such that the desired system utilization is reached [19]. For the assurance requirements

of tasks, we consider two different settings. In the first setting, all tasks have the same assurance

requirement (e.g., k = 2). For the second setting, the assurance parameters of tasks are randomly

17

generated within the range of [2, 10]. For each run of the simulation, approximately 20 million jobs

are executed. Moreover, each result point in the graphs corresponds to the average of 100 runs.

6.1 Performance of the Static Schemes

Reliability: Note that, under RAPM schemes, recovery tasks/jobs are scheduled and the reliability

of the corresponding tasks will be improved. Define the probability of failure (i.e., 1−reliability)

PoFi(S) of a task τi under any scheme S as the ratio of the number of failed jobs over the total

number of jobs executed. Consider the NPM scheme as the baseline, the reliability improvement of

a task τi under a scheme S can be defined as:

RIi(S) =
PoFi(NPM)

PoFi(S)
=

of failed jobs under NPM
of failed jobs under S

That is, larger RIi(S) values indicate better reliability improvement. Moreover, to quantify the

fairness on reliability improvement to tasks, following the idea in [15], the fairness index of a scheme

S is defined as:

FI(S) =
(
∑

i RIi(S))2

n
∑

i RIi(S)2
(21)

From this equation, we can see that, the value of fairness index has the range of (0, 1], and the higher

values mean that tasks are treated more fairly.

 0

 2

 4

 6

 8

 10

 12

 14

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

M
in

im
um

 R
I

system utilization (U)

SUF
Flexible:k=4
Flexible:k=2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

A
ve

ra
ge

 R
I

system utilization (U)

SUF
Flexible:k=4
Flexible:k=2

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

F
ai

rn
es

s
In

de
x

system utilization (U)

SUF
Flexible:k=4
Flexible:k=2

a. minimum RI b. average RI c. fairness index

Figure 2. Reliability improvement and fairness index for the static schemes.

In the first set of experiments, we consider task sets with 10 tasks that have the same assurance pa-

rameter k. Figure 2 shows the reliability improvements and the fairness index for the static schemes.

In the figures, “Flexible:k=i” means that all tasks have the same assurance parameter k = i in the

static flexible RAPM problem. The X-axis represents the system utilization.

18

For applications where the system reliability is determined by the task with lowest quality, Fig-

ure 2a shows the minimum reliability improvement of the tasks. Here, as mentioned before, larger

numbers mean better improvement. From the figure, we can see that, when the system utilization is

low (e.g., U ≤ 0.4), the task-level static scheme SUF will manage all the tasks and performs better

than the flexible scheme. However, when the system utilization is large (e.g., U ≥ 0.4), at least

one task will not be managed and its reliability will not have any improvement. For the flexible

scheme, the minimum reliability improvement of the tasks is rather stable and directly related to the

assurance parameter k. For example, when k = 4, only 1 out of 4 jobs will not have a recovery job

for each task and, compared to NPM, the reliability improvement is roughly around 4 times. The

same result is obtained for the case of k = 2. However, for large system utilization (e.g., U ≥ 0.6),

the flexible RAPM scheme cannot guarantee the assurance requirements for all the tasks.

If the overall system reliability depends on the total successfully executed jobs from all tasks,

Figure 2b shows that the average reliability improvement of the tasks under SUF is much better than

the flexible RAPM scheme. The reason is as follows: while SUF always tries to manage as many

jobs as possible up to the workload Xopt, the manageable jobs under flexible scheme are limited

by the assurance parameters of tasks. Figure 2c further shows the fairness index of the tasks under

different system utilizations. Here, we can see that, with the same assurance parameter, the flexible

scheme provides excellent fairness to tasks. From the results, we can conclude that the task-level

SUF scheme should be used if the overall system reliability depends on the average behaviors of

tasks. However, if the system reliability is limited by the lowest quality task or fairness is required

for tasks, the flexible scheme should be employed.

Energy Savings: For different settings of the assurance requirements for tasks, Figure 3 shows the

normalized energy consumption for the static flexible RAPM scheme. For comparison, the energy

consumption for SUF and the upper bounds is also shown. Here, “K-UPPER” denotes the upper

bound that considers the assurance requirements of tasks and “ABS-UPPER” is for the absolute

upper bound. Note that, higher energy consumption means less energy savings.

From the results, we can see that the energy consumption of SUF is very close to the abso-

lute bound (ABS-UPPER), which coincides with our previous results [31]. For the flexible RAPM

scheme, its energy performance is almost the same as that of K-UPPER at low system utilization

(e.g., U ≤ 0.3) since all manageable jobs are scaled down to the same frequency (e.g., fee). However,

at high system utilization, due to conflicts of the required recovery jobs under deeply-red recovery

patterns, the scaled frequency of the flexible scheme is higher than that of K-UPPER (which as-

19

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

system utilization (U)

Flexible
K-UPPER

SUF
ABS-UPPER

a. k = 2 b. k = 4 c. k ∈ [2, 10]

Figure 3. Normalized energy consumption for the static schemes.

sumes all remaining static slack can be used by DVFS) and thus consumes more energy. Moreover,

when compared to SUF, as shown in Figure 3a, the flexible RAPM scheme performs worse with

k = 2 due to limited number of manageable jobs. For larger values of k (Figures 3b and 3c), the

energy performance difference becomes smaller, especially for the moderate system utilization (e.g.,

0.35 ≤ U ≤ 0.45).

Therefore, we can conclude that the flexible static RAPM scheme, which considers different as-

surance requirements of individual tasks, can guarantee such assurance requirements and/or provide

fairness to tasks, but at the cost of increased energy consumption. Moreover, we can see that, when

choosing the assurance requirements for tasks, in addition to satisfying tasks’ reliability require-

ments, to maximize the energy savings, the overall manageable workload should consider Xopt and

use it as a reference.

6.2 Dynamic Schemes

In this section, we evaluate the dynamic schemes for their energy savings and reliability enhance-

ments over static schemes. Here, Algorithm 1 is applied on top of the static flexible scheme (referred

as “Flexible+DYN”) as well as the static task-level SUF scheme (referred as “SUF+DYN”). Note

that, in the dynamic algorithm, all jobs from all tasks are treated equally. That is, any job can reclaim

available dynamic slack at run time, regardless of whether it is scaled by the static scheme or not.

To emulate the run-time behaviors of real-time tasks/jobs, the variability of a task’s workload is

controlled by the ratio of WCET
BCET

(that is, the worst-case to best-case execution time ratio), where

larger values of the ratio imply more dynamic slack can be expected from the early completion of

tasks/jobs. At run time, the actual execution time of a real-time job follows a normal distribution

with mean and standard deviation being WCET+BCET
2

and WCET−BCET
6

, respectively [3].

20

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

WCET/BCET

Flexible
SUF

SUF+DYN
Flexible+DYN

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 1 2 3 4 5 6 7 8 9 10

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n

WCET/BCET

Flexible
SUF

SUF+DYN
Flexible+DYN

 1e-09

 1e-08

 1e-07

 1e-06

 1 2 3 4 5 6 7 8 9 10

pr
ob

ab
ili

ty
 o

f f
ai

lu
re

WCET/BCET

SUF
SUF+DYN

Flexible
Flexible+DYN

a. normalized energy for k = 4 b. normalized energy for k ∈ [2, 10] c. probability of failure for k ∈ [2, 10]

Figure 4. Energy and reliability improvement with dynamic schemes at U = 0.5.

Considering the system utilization of task sets to be U = 0.5, Figure 4 shows the performance

improvement of the dynamic scheme over static schemes on both energy and reliability. Note that,

even if the ratio WCET
BCET

= 1 (i.e., there is no variation in the execution time of tasks), dynamic slack

is still available at run time due to the free of statically scheduled recovery jobs when there is no

error during the execution of their corresponding scaled jobs. From the Figures 4a and 4b (which

correspond to tasks having the same assurance requirement k = 4 and tasks with different assurance

requirements randomly generated between [2, 10], respectively), we can see that the dynamic scheme

can significantly improve the energy performance over static schemes (upto 33% for the flexible

scheme and 20% for SUF). However, the performance improvement is rather stable after WCET
BCET

≥ 3.

The reason comes from the fact that, with larger values of the ratio, excessive dynamic slack is

available from jobs’ the early completion and almost all jobs can reclaim the slack and run at the

frequency fee.

Moreover, we can see that the difference (from 10% to 15% for the cases considered) between the

energy performance of the static schemes is effectively diminished (only around 2%) after combining

with the dynamic scheme. Therefore, although the static flexible scheme itself may consume more

energy, the combination of the flexible scheme with dynamic algorithm can recuperate its energy

inefficiency while guaranteeing the individual assurance requirements of tasks statically.

For the case of randomly generated assurance requirements for tasks, Figure 4c shows the overall

probability of failure (i.e., 1−reliability) of the system under different schemes considered. Here,

smaller values indicate better system reliability. From the results, we can see that, by allowing the

statically unscaled jobs (which have no recovery job initially) to reclaim dynamic slack, additional

recovery jobs can be scheduled online and the dynamic algorithm can further improve system re-

liability. For larger values of WCET
BCET

, the actual execution time of jobs becomes shorter and the

21

reliability for all schemes increases slightly.

7 Conclusion and Future Work

Energy has been recognized as a first-class resource in computing systems and power aware com-

puting has recently become an important research area. Consider the negative effects of voltage

scaling on system reliability due to increased transient fault rates, reliability-aware power manage-

ment (RAPM) schemes have been studied to save energy while preserving system reliability. The

central idea of RAPM schemes is to reserve a portion of the available slack to schedule one recovery

to preserve reliability. However, in previous RAPM schemes, real-time tasks are treated unequally

and are selected for management in greedy fashion without considering individual tasks’ reliability

requirements.

In this paper, for a set of periodic real-time tasks with different assurance requirements, we study

flexible static RAPM schemes, which targets at maximizing energy savings while ensuring tasks’

assurance requirements by manages a subset of jobs for every task. The problem is formally pre-

sented and is shown to be NP-hard, in the strong sense. The upper bounds on energy savings are

discussed. For a special case, where the requirements for recovery jobs follow a deeply-red pat-

tern, a pseudo-polynomial static scheme is proposed. Dynamic schemes that explore dynamic slack

for better energy savings and reliability enhancement are also discussed. The schemes are evalu-

ated extensively through simulations. From the results, we conclude that, compared to the previous

task-level RAPM schemes, the new flexible RAPM schemes can guarantee the assurance require-

ments and provide fairness for all tasks, but at the cost of decreased energy savings. However, when

combining with dynamic schemes, such cost for the flexible scheme can be effectively recovered.

For our future work, we will study schemes that can automatically choose the best assurance

parameters for tasks to maximize energy savings and/or reliability enhancements.

References

[1] T. AlEnawy and H. Aydin. Energy-constrained scheduling for weakly-hard real-time systems. In Proc.

of The 26rd IEEE Real-Time Systems Symposium, Dec. 2005.

[2] H. Aydin. Exact fault-sensitive feasibility analysis of real-time tasks. IEEE Trans. on Computers,

56(10):1372–1386, 2007.

[3] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Dynamic and aggressive scheduling techniques

for power-aware real-time systems. In Proc. of IEEE Real-Time Systems Symposium, 2001.

22

[4] S. Baruah, R. Howell, and L. Rosier. Algorithms and complexity concerning the preemptive scheduling

of periodic, real-time tasks on one processor. Real-Time Systems, 2, 1990.

[5] E. Bini, G. Buttazzo, and G. Lipari. Speed modulation in energy-aware real-time systems. In Proc. of

the 17th Euromicro Conference on Real-Time Systems, 2005.

[6] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In Proc. of The HICSS

Conference, Jan. 1995.

[7] M. Caccamo and G. Buttazzo. Exploiting skips in periodic tasks for enhancing aperiodic responsiveness.

In Proc. of the 18th IEEE Real-Time Systems Symposium (RTSS), Dec. 1997.

[8] E. M. Elnozahy, R. Melhem, and D. Mossé. Energy-efficient duplex and tmr real-time systems. In Proc.

of The 23rd IEEE Real-Time Systems Symposium, Dec. 2002.

[9] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner. Razor: circuit-

level correction of timing errors for low-power operation. IEEE Micro, 24(6):10–20, 2004.

[10] R. Ernst and W. Ye. Embedded program timing analysis based on path clustering and architecture

classification. In Proc. of The Int’l Conference on Computer-Aided Design, pages 598–604, 1997.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-

Completeness. Mathematical Sciences Series. Freeman, 1979.

[12] M. Hamdaoui and P. Ramanathan. A dynamic priority assignment technique for streams with (m,k)-firm

deadlines. IEEE Trans. on Computers, 44(5):1443–1451, 1995.

[13] T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable voltage processors. In

Proc. of The Int’l Symposium on Low Power Electronics and Design, 1998.

[14] R. Iyer, D. J. Rossetti, and M. Hsueh. Measurement and modeling of computer reliability as affected by

system activity. ACM Trans. on Computer Systems, 4(3):214–237, Aug. 1986.

[15] R. Jain, D. Chiu, and W. Hawe. A quantitative measure of fairness and discrimination for resource

allocation in shared computer systems. Technical Report TR-301, DEC Research, Sep. 1984.

[16] K. Jeffay and D. L. Stone. Accounting for interrupt handling costs in dynamic priority task systems. In

Proc. of the IEEE Real-Time Systems Symposium, Dec. 1993.

[17] G. Koren and D. Shasha. Skip-over: algorithms and complexity for overloaded systems that allow skips.

In Proc. of the IEEE Real-Time Systems Symposium (RTSS), pages 110–117, Dec. 1995.

[18] R. Melhem, D. Mossé, and E. M. Elnozahy. The interplay of power management and fault recovery in

real-time systems. IEEE Trans. on Computers, 53(2):217–231, 2004.

[19] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded operating systems.

In Proc. of 18th ACM Symposium on Operating Systems Principles, Oct. 2001.

[20] D. K. Pradhan. Fault Tolerance Computing: Theory and Techniques. Prentice Hall, 1986.

[21] G. Quan and X. Hu. Enhanced fixed-priority scheduling with (m,k)-firm guarantee. In Proc. of the IEEE

Real-Time Systems Symposium, Nov. 2000.

23

[22] J. A. Ratches, C. P. Walters, R. G. Buser, and B. D. Guenther. Aided and automatic target recognition

based upon sensory inputs from image forming systems. IEEE Tran. on Pattern Analysis and Machine

Intelligence, 19(9):1004–1019, 1997.

[23] S. Saewong and R. Rajkumar. Practical voltage scaling for fixed-priority rt-systems. In Proc. of the 9th

IEEE Real-Time and Embedded Technology and Applications Symposium, 2003.

[24] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware static timing analysis.

In Proc. of the 24th IEEE Real-Time System Symposium, 2003.

[25] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware software-based fault tolerance in

real-time systems. In Proc. of The Int’l Symposium on Low Power Electronics Design, 2002.

[26] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu energy. In Proc. of The

First USENIX Symposium on Operating Systems Design and Implementation, Nov. 1994.

[27] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded real-time systems. In

Proc. of IEEE/ACM Design, Automation and Test in Europe Conference(DATE), 2003.

[28] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in fixed-priority real-time

embedded systems. In Proc. of Int’l Conference on Computer Aided Design, Nov. 2003.

[29] D. Zhu. Reliability-aware dynamic energy management in dependable embedded real-time systems. In

Proc. of the IEEE Real-Time and Embedded Technology and Applications Symposium, 2006.

[30] D. Zhu and H. Aydin. Energy management for real-time embedded systems with reliability requirements.

In Proc. of the Int’l Conf. on Computer Aidded Design, Nov. 2006.

[31] D. Zhu and H. Aydin. Reliability-aware energy management for periodic real-time tasks. In Proc. of the

IEEE Real-Time and Embedded Technology and Applications Symposium, 2007.

[32] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on reliability in real-time em-

bedded systems. In Proc. of the Int’l Conf. on Computer Aidded Design, 2004.

[33] D. Zhu, R. Melhem, D. Mossé, and E. Elnozahy. Analysis of an energy efficient optimistic tmr scheme.

In Proc. of the 10th Int’l Conference on Parallel and Distributed Systems, 2004.

[34] D. Zhu, X. Qi, and H. Aydin. Priority-monotonic energy management for real-time systems with re-

liability requirements. In Proc. of the IEEE International Conference on Computer Design (ICCD),

2007.

APPENDIX: Proof of Theorem 3

Our strategy in proving the theorem has two phases. In the first phase, we will focus on the

the well-known real-time scheduling problem with skip parameters [17] that we will call, in short,

RT-SKIP.

RT-SKIP: Consider a set of independent periodic real-time tasks {τ1, . . . , τn}, where task τi is

represented by its WCET ci, period pi and the skip parameter ki. Is there a schedule where each task

τi meets ki − 1 deadlines in each consecutive ki invocations?

24

We will first show that a special case of RT-SKIP, called RT-SKIP*, is NP-Hard in the strong

sense. Then, we will establish that that RT-SKIP* itself is equivalent to a specific instance of the

flexible RA-PM problem, implying that the latter is also NP-Hard in the strong sense.

Specifically, RT-SKIP* is defined as the special case of RT-SKIP where all n tasks have the same

period p, the same skip parameter k and the total utilization is equal to Utot =
∑

ci

p
= k

k−1
.

Theorem 5 RT-SKIP* is NP-Hard in the strong sense.

Proof: Consider the following 3-PARTITION problem, which is known to be NP-Hard in the strong

sense [11].

3-PARTITION: Consider integers m, k and a set of items A = {a1 . . . a3m}, where an integer

size si is associated with each ai. It is known that
3m∑
i=1

si = m.B and B
4

< si < B
2
, ∀i. Is there a

partitioning of A into m bins A1 . . . Am, such that the sizes of the items placed in each bin sum up to

exactly
∑

ai∈Aj

si = B, ∀j? (Note that the constraints given in the problem imply that, if there exists

such a partitioning, exactly three items will appear in each bin Aj .)

Given an instance of the 3-PARTITION problem, specified by m,B and {si} values, we will

construct an equivalent instance of RT-SKIP*, and show that the 3-PARTITION instance admits a

YES answer if and only if the corresponding RT-SKIP* instance admits a YES answer.

First, observe that, in any YES instance of 3-PARTITION, the 3m− 3 items that are not placed in

a given bin Ak can be seen as forming a “mirror” (or, complement) bin Ak with total size m·B−B =

(m− 1).B

Since each item ai is supposed to appear in exactly one bin in the YES instance of the 3-

PARTITION problem, we can conclude that ai will appear in exactly m − 1 mirror bins. Given

an instance of the 3-PARTITION, construct the corresponding RT-SKIP* instance as follows: we

have 3m periodic tasks τ1, . . . , τ3m, each with period pi = p = (m−1)B, execution time ci = si and

the skip parameter ki = k = m. Observe that, complying with the specification of the RT-SKIP*

problem definition, the total utilization of the task set is:

Utot =
3m∑
i=1

ci

p
=

3m∑
i=1

si

p
=

m B

(m− 1) B
=

k

(k − 1)

Since ki = k = m ∀i, it is sufficient and necessary to provide the schedule in the interval

[0,m(m − 1)B] where all tasks meet their deadlines according to the skip parameters (and repeat

that schedule thereafter).

25

In these settings, the minimum CPU time needed to meet all the “skip” requirements of the tasks

in the interval [0,m(m − 1)B] is
∑3m

i=1 ci · m · m−1
m

= m · (m − 1) · B, which indicates that the

timeline must be fully utilized and exactly m − 1 instances of each task (out of m total instances)

must be scheduled in the same interval.

Given such a schedule, consider partitioning the items (in the 3-PARTITION instance) to bins in

such a way that ai is placed in Aj if and only if τi is not scheduled in the jth period. Recalling the

relationship between the bins and the “mirror” bins, we conclude that the 3-PARTITION instance

admits also a YES answer. Similarly, when the 3-PARTITION instance has a YES answer, one can

obtain a YES instance for the RT-SKIP* instance by scheduling τi in the jth period whenever ai is

not placed in Aj; concluding the proof. ¥

Having proven that RT-SKIP* is NP-Hard in the strong sense, we can also state the following:

Corollary 1 RT-SKIP is NP-Hard in the strong sense.

We believe that the above result is also worthy of attention on its own. Because, in [17], Koren

and Shasha only showed that RT-SKIP is NP-Hard in the weak sense. Later, Quan and Hu proved

that the general problem of scheduling with (m, k)-firm deadlines is NP-Hard in the strong sense

[21]. The RT-SKIP problem is only a special case of the general problem of scheduling with (m, k)-

firm deadlines, where m = k− 1; hence, the fact that RT-SKIP is NP-Hard in the strong sense is not

implied by the existing results3.

Now, we are ready to show that the flexible RA-PM problem is also NP-Hard in the strong sense.

We will show that the flexible RA-PM problem can be reduced to the RT-SKIP* problem. Since the

former is just shown to be NP-Hard in the strong sense above, the conclusion will follow.

Given an instance of the RT-SKIP* problem with a task set τ = {τ1, . . . , τn} where each task τi

has an execution time ci, the same skip parameter k and the same period p, and the total utilization is

Utot =
∑

ci

p
= k

k−1
, we construct the corresponding flexible RA-PM instance as follows: We have a

periodic task set τ ′ = {τ ′1, . . . , τ ′n}, where each task τ ′i has the execution time c′i = ci

2
, the same skip

parameter k′ = k and the same period p′ = p +
∑n

i=1 c′i. In this specific instance, the frequency-

independent power component is assumed to be negligible. Hence, the energy-efficient frequency

of each task is equal to to the minimum frequency available on the CPU, which is assumed not to

exceed 0.5 (when normalized with respect to the maximum CPU frequency).

3To be accurate, the proof of Quan and Hu made use of a different special case where m = 1 for all tasks.

26

In the flexible RA-PM instance, we will need to provide a schedule in which all the managed

tasks are selected according to the assurance requirement k′ = k, in interval [0, kp′]. In each period

of length p′ as defined above, the total workload that needs to be executed at fmax consists of the

tasks that are not managed and the recovery tasks for those that are managed. It is easy to see that

the total CPU time that must be reserved for this component is equal to
∑n

i=1 c′i =
∑n

i=1
ci

2
in every

period p′.

Also observe that, in every period p′, p′ −∑n
i=1 c′i = p (where p is the common period of tasks in

the original RT-SKIP* instance), is the CPU time available for the execution of the managed tasks

at the scaled frequency(ies).

Hence, the total CPU time available for the scaled tasks in the interval [0, kP ′] is

W1 = k · p′ − k
∑

c′i = k · p

Next, note that, the minimum managed/selected task workload4 that must be completed in the

same interval [0, kp′] is:

W2 = (k − 1)
n∑

i=1

c′i = (k − 1)
∑ ci

2

Recalling that Utot =
∑

ci

p
= k

k−1
, we have:

W2

W1

=
(k − 1)

∑
ci

2

k · p = 0.5

Since W2

W1
= 0.5, the maximum possible energy savings can be obtained by using the uniform

frequency 0.5, thereby fully utilizing the timeline, subject to the condition that a feasible schedule

exists with that frequency for the k − 1 instances of each task in the k consecutive common

period p′. Observe that, if such a schedule exists:

• the execution of each scaled instance of τi will be c′i
0.5

= ci, and,

• we will have exactly k′ = k time intervals, each of length p′−∑
c′i = p, during which exactly

(k − 1) scaled instances of each τ ′i must be scheduled.

But the above conditions characterize precisely the necessary and sufficient conditions under

which the original RT-SKIP* instance would admit a YES answer. Hence, a flexible RA-PM opti-

mization routine that would run in polynomial-time would be able to check if the minimum energy

4We are expressing the workload as normalized to the maximum CPU speed.

27

flexible RA-PM schedule yields a total energy figure which is equal to the one obtained by scaling

exactly (k − 1) instances of each task during the super-period, using the frequency 0.5.

As shown above, this would be possible if and only if there exists a positive answer to the RT-

SKIP* instance. Since the RT-SKIP* problem was shown to be NP-Hard in the strong sense, it

follows that the general flexible RA-PM problem is NP-Hard in the strong sense, as well.

28

