
Automatic Generation of Implementations For
Object-Oriented Abstractions ∗

Qing Yi Jianwei Niu Anitha Ancha Jeyashree Lakshmipathy
University of Texas at San Anstonio

ABSTRACT
We present a general-purpose code transformation system,
the POET system, for the purpose of automatic code genera-
tion from high-level behavior specifications of object-oriented
abstractions to low-level efficient implementations in C++
and Java. In particular, we have developed an extended
finite-state-machine-based language, iFSM, which models the
behavior logic together with implementation details of arbi-
trary OO abstractions. We then use the POET system to au-
tomatically translate the behavior specifications to type-safe
OO implementations in Java or C++. Finally, we use the
POET system to automatically translate the behavior speci-
fications to the input language of a model-checker (NuSMV)
and apply model checking to validate the correctness of the
specification. If the iFSM specification is correct, our ap-
proach can always generate a correct and type-safe imple-
mentation.

1. INTRODUCTION
Object-oriented programming (OOP) has become one of

the most dominant programming paradigms today. In par-
ticular, a large collection of tools have been developed to ef-
fectively support the design of object-oriented software [44,
32, 26, 27, 28] and to automatically generate code skeletons
from high level software design [1, 3, 2, 34, 6]. However, soft-
ware developers are still required to provide implementation
details for each OO abstraction by explicitly managing the
control and data flow in lower level OOP languages such as
C++ or Java. These implementations details, when coupled
with the use of pointer based data structures (e.g., linked
lists), are extremely difficult for compilers or static software
verification tools to understand. As a result it is difficult to
validate the correctness of abstraction implementations or to
automatically improve their performance through compiler
optimizations.

∗This research is funded by the NSF through career award
CCF0747357

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Figure 1: The POET Translation System

We introduce a general-purpose code transformation sys-
tem, POET, for the purpose of automatic code generation
from high-level behavior specifications of object-oriented ab-
stractions to low-level efficient implementations in C++ or
Java. In particular, we have developed an extended finite-
state-machine-based language, the iFSM (Implementation
FSM) language, which models the behavior logic together
with implementation details of arbitrary OO abstractions.
We then use the POET system to automatically translate
the behavior specifications to type-safe OO implementations
in Java or C++. Finally, we use the POET system to au-
tomatically translate iFSM specifications to the input lan-
guage of a model-checker NuSMV [16], and apply model
checking to validate the correctness of the specification. The
structure of our translation system is shown as a data flow
diagram in Figure 1.

Our goal is to automatically bridge the gap between soft-
ware design using high-level specification languages (e.g.,
UML) and software implementation using lower level pro-
gramming languages (e.g., C++,Java). Our iFSM language
is essentially a UML state machine annotated with imple-
mentation specifications. An example iFSM specification
is shown in Figures 3 and 4. A key insight of the lan-
guage is that the infinite number of runtime states within
an OO abstraction can be summarized using a finite number
of summary states. Based on the abstraction of summary
states, developers can express program control flow through
state transitions in a FSM instead of directly managing con-
trol flow through branching instructions. The absence of
branches and the explicit declaration of summary states al-
low implementation details of an abstraction to be much

easier to validate for correctness. At the same time, our
code generation approach ensures that the auto-generated
code is as efficient as those manually written by developers.
Our contributions include the following.

• We present iFSM, an extended finite-state-machine-
based language, to specify both the behavior logic and
the implementation details of general-purpose OO ab-
stractions.

• We introduce a general-purpose code transformation
system, the POET system, which can be used to ef-
fectively translate high-level behavior specifications to
low-level efficient implementations.

• We have used the POET system to automatically trans-
late the iFSM language to efficient type-safe OO im-
plementations in Java and C++. Our experimental
results show that the auto-generated C++ implemen-
tations are as efficient as those manually written by
developers.

• We have used the POET system to automatically trans-
late the iFSM language to a model-checking language
(NuSMV) and apply model checking to validate the
correctness of the specifications.

In the following, Section 2 introduces the POET trans-
formation system. Section 3 describes our iFSM language.
Section 4 presents the algorithm for translating iFSM to
C++/Java implementations. Section 5 presents the algo-
rithm for translating the IFSM specification to a modeling
checking language to validate the specification correctness.
Section 6 presents experimental results. Section 7 presents
related work. Section 8 concludes the presented work.

2. THE POET TRANSFORMATION ENGINE
Our POET transformation engine is built using an in-

terpreted transformation language named POET [48, 49],
which was designed specifically for the purpose of building
ad-hoc translators between arbitrary languages (e.g. C/C++,
Java) as well as applying transformations to programs in
these languages. A preliminary design and implementation
of the language have been used to successfully optimize the
performance of several important linear algebra kernels in
C [49, 50]. In this paper, we have used the POET language
to build a system for automated code generation and vali-
dation.

Figure 2 shows the structure of our POET translator,
which includes the following components.

• Parameter declarations. The translator in Figure 2
starts with a number of external parameter declara-
tions to control the configuration of code generation.
Specifically, each keyword parameter declares a global
variable, e.g., outputLang and outputFile, whose val-
ues can be re-defined by command-line configurations.
A single POET translator can therefore be used to dy-
namically produce different output. This parameter-
ization capability allows different software implemen-
tations be manufactured on demand based on different
feature requirements.

• Transformation routine definitions. In Figure 2, the
declaration of parameters is followed by a sequence
of transformation routine definitions, e.g., the Driver

<parameter fsmFiles token=(FileName) parse=LIST(STRING," ")
default="" message="names of IFSM input files"/>

<parameter outputFile type=STRING default=""
message="output file name for generated OO code"/>

<parameter outputLang type=STRING default=""
message="language syntax to output the generated code"/>

<parameter smvFile type=STRING default=""
message="output file name for generated SMV code"/>

<xform Driver pars=(input) genSMV=1 genOO=1>
......
</xform>
......
<input to=spec syntax="IFSM.code" from=fsmFiles />
<eval (ooCode,smvCode)=XFORM.Driver[genSMV=(smvFile!="");

genOO=(outputFile!="")](spec);
/>
<output to=(outputFile) cond=(outputFile!="")

syntax=(outputLang) from=ooCode/>
<output to=(smvFile) cond=(smvFile!="")

syntax=("SMV.code") from=smvCode/>

Figure 2: The POET translator

routine. Each POET transformation routine takes a
collection of input parameters, e.g., the abstract syn-
tax tree (AST) representation of an input code, and
returns the analysis or transformation results. They
are defined and invoked similar to imperative functions
in C and receives full programming support to accom-
plish their tasks. In particular, they can use built-in
pattern matching operations together with condition-
als, loops, and recursive functions to process and build
both atomic values (e.g., integers, strings) and com-
pound data structures (e.g., lists, tuples, hash tables,
AST objects). Note that AST nodes are built-in data
structures in POET. The built-in support for inter-
nal representation of programs makes it much easier
to build program translators in POET than using a
general-purpose language such as C/C++/Java.

• Processing input files and outputing results. The POET
translator in Figure 2 uses a single input command
to parse all the input programs (i.e., the IFSM files),
build an abstract syntax tree (AST) representation of
the entire input code, and then store the AST into a
user-defined variable (the spec variable). The trans-
lator then invokes the Driver routine to traverse the
AST and apply various code analysis and transforma-
tions. Finally, the transformation results (stored in
variables ooCode and smvCode) are unparsed to ex-
ternal files using the output language syntax and the
SMV language syntax respectively.

As illustrated by the input and output commands in Fig-
ure 2, POET uses syntax definitions obtained from external
files to discover the structure of the input code and to un-
parse output code with correct syntax. This built-in support
for dynamically parsing and unparsing programs in different
languages makes it extremely convenient to build ad-hoc
source-to-source translators. Concepts from different lan-
guages can be mixed within a single AST, and the syntax of
AST nodes does not need to be specified until the transfor-
mation results are unparsed to external files.

The POET language is ideal for expressing arbitrary se-
quences of program transformations to the source-level rep-

resentation (i.e., the Abstract Syntax Tree) of an input code.
The full programming support for customized transforma-
tions distinguishes POET from most other existing trans-
formation languages, which rely on pattern-based rewrite
rules to support definition of new transformations.

POET is designed to be a code transformation language
that can be easily used to build customized source-to-source
translators. In this paper, we have used the language to
build a code generation system that automatically translate
high-level abstraction specifications to low level efficient im-
plementations in languages such as C++/Java.

3. THE IFSM LANGUAGE
Our iFSM (Implementation Finite State Machine) lan-

guage was initially designed from adapting the HTS state
machine language by Niu et al [40]. The goal of iFSM is to
precisely describe the implementation details of an object-
oriented abstraction as well as the interface of the OO ab-
straction. The following describes each aspect in more de-
tail.

3.1 Finite State Machine Specification
The goal of the FSM specification is to precisely define the

internal operational logic of an OO abstraction without ex-
plicitly managing any control flow branches. As illustrated
by the example in Figures 3 and 4, each FSM is essentially
a UML finite state machine annotated with implementation
specifications. Each FSM specification includes the follow-
ing components.

• Variables, where each variable has a name, a type,
and an optional default value. The supported variable
types include boolean, integer, external type name,
and pointer of other types (e.g., the ref(T) type for
variable obj in Figure 3). Each external type name,
e.g., the type T in Figure 3, is expected to be the
name of an external FSM. However, it could also re-
main unknown to the iFSM translator as long as the
internal structure of the type is never exploited. This
decision allows the iFSM language to be easily exten-
sible. For example, float or char can be simply used
as unknown type names. Each variable in the FSM
specification will be translated into a member variable
in the OO abstraction implementation.

• Control states, where each state has a name and an as-
sociated boolean expression (defined using the cond at-
tribute in Figure 3). Each FSM control state can rep-
resent a potentially infinite number of individual states
that an OO object may stay at runtime. A FSM object
is considered to be in a control state, e.g., the objIs-
NULL state in Figure 3, if and only if the associated
boolean expression (e.g., obj==null && count==null
for the objIsNULL state) evaluates to true. Note that
at any time, only one of the boolean expressions asso-
ciated with FSM states can be evaluated to true; that
is, a FSM object can stay at exactly one control state
at any point in time.

• Actions, where each action has a list of input param-
eters and is associated with a sequence of statements.
Actions are treated as macros in the FSM specifica-
tion and they return nothing. They will be trans-
lated into private member methods that return void
in C++/Java classes.

<FSM name=CountRefHandle init=objIsNULL >
<variable name=obj type=ref(T) init=null/>
<variable name=count type=ref(int) init=null/>

<state name=objIsNULL cond=(obj==null && count==null)/>
<state name=objIsUnique

cond=(obj!=null && count!=null && val(count)==1)/>
<state name=objIsShared

cond=(obj!=null && count!=null && val(count)>1)/>

<action name=init pars=(t:ref(T)) body=(...)/>
......
<event name=build pars=(t:val(T))/>
<event name=modify pars=() return=(obj) />
......
<transition from=objIsNULL to=objIsUnique event=(build)

action=(init(t.Clone()))/>
......

</FSM>

Figure 3: FSM specification for a reference-counting
abstraction

• Events, where each event has a list of parameters and
an optional return value. Each event will be trans-
lated into a public or protected member method of
the generated abstraction implementation, where the
statements and control flow inside the method body
are specified through state transitions of the FSM.

• State transitions, where each transition is declared with
a set of source states, a set of destination states, a set of
triggering events, an optional boolean condition, and
a sequence of statements that modify private variables
of the FSM abstraction. Each transition will be trans-
lated into an if-statement in the method body of each
event that triggers the transition.

The key idea of FSM specification is to use a finite num-
ber of control states to categorize the infinite number of
different values that each member variable of an FSM ob-
ject may have at runtime. Each public/protected method
of a C++/Java class can be expressed as a parameterized
event in the FSM. If the C++/Java method modifies pri-
vate variables of the object, such modifications are modeled
as transitions triggered by the corresponding event. The
control flow within the body of each C++/Java method is
expressed through the source states and the conditions as-
sociated with the transitions. The algorithm for translating
FSMs to C++/Java classes is presented in Section 4.

Our iFSM language can conveniently express the imple-
mentation details of a large collection of OO abstractions.
While the current language does not yet support the ex-
pression of loops, recursive functions may be expressed by
generating new events within transitions. Our future work
intends to model loops through the definition of container
and iterator concepts.

3.2 Abstraction Interface Specification
While each FSM specification can precisely summarize the

implementation details of an OO abstraction, the composi-
tion of abstractions requires additional details such as the
access control and dynamic binding of member methods and
the inheritance relations between abstractions. To support
parametric polymorphism (e.g., C++ templates), abstrac-
tions may additionally have type parameters.

objIsShared

copy
(!in_state(that,objIsNULL))
/val(count)=(val(count)-1)

share(that)

objIsNULL

copy
in_state(that,objIsNULL)
/val(count)=(val(count)-1)

obj=null
count=null

reset
/val(count)=(val(count)-1)

obj=null
count=null

objIsUnique

build
/val(count)=(val(count)-1)

init(t.Clone())

modify
/val(count)=(val(count)-1)
init(val(obj).Clone())

copy
(!in_state(that,objIsNULL))

/share(that)

build
/init(t.Clone())

copy
(!in_state(that,objIsNULL))

/destroy()
share(that)

copy
in_state(that,objIsNULL)

/destroy()

reset
/destroy()

build
/destroy()

init(t.Clone())
Figure 4: The graphical representation of FSM in Figure 3

The abstraction interface specification in Figure 5 illus-
trate how to specify these OO properties in our iFSM lan-
guage. In particular, an arbitrary number of FSM class def-
initions can be built from each FSM. Each FSM class spec-
ification includes the name of the current class, the name
of the underlying FSM, and a set of optional components
including:

• A set of type parameters, which makes the class a C++
template or Java generics;

• A set of base classes that the current class inherits
from;

• A set of event names to be used to build constructor
methods of the class;

• A single event name to be used to build the destructor
method of the class (C++ only);

• A set of extra events which comprise additional pub-
lic/protected methods of the current class. None of
these extra methods is allowed to modify variables of
the class.

• The access control (i.e., public, protected, or private)
for each event. By default, all events are translated
into public methods.

• The static or dynamic binding of methods. The default
binding of methods is dynamic when generating Java
classes and is static when generating C++ classes.

• Additional method names for events, and whether to
rename the methods for certain events.

The goal of the abstraction interface specification is to al-
low the flexibility of easily adapting abstraction interfaces
for different needs, specifically for easy integration of the
auto-generated classes with existing code. The iFSM lan-
guage also supports an invoke declaration that allows the
abstraction interface specifications to be embedded within
existing C++/Java code.

4. GENERATING IMPLEMENTATIONS
We have used the POET translator shown in Figure 2 to

automatically translate iFSM specifications such as those in
Figures 3 and 5 to efficient implementations of C++/Java

<FSM_class name=CountRefHandle FSM=CountRefHandle
parameter=(T)
constructors=(initialize,build,copy)
destructors=(delete)
access=(modify:protected)
extra_events={

<event name=ConstRef pars=() return=(val(obj))/>
<event name=EQ pars=(that:val(CountRefHandle))

return=(obj==that.obj)/>
}
rename=(reset=>"Reset",

EQ=>"operator==",
modify=>"UpdatePtr")

/>

Figure 5: An abstraction interface specification

classes. Our translation mapping strategy includes the fol-
lowing.

• Each FSM variable is translated into a private member
variable in the resulting class.

• Each FSM action is translated into a private member
method that returns void in the resulting class.

• Each FSM event is translated into a public or protected
member method in the resulting class.

• Each FSM state transition is translated into an if-
statement in the method body of its triggering event.

Figure 6 shows some fragments of the auto-generated C++
class from the FSM specifications in Figures 3 and 5. In
particular, the build method of the C++ class corresponds
to the build event in Figure 3, and the three transitions trig-
gered by the build event (see Figure 4) have been translated
into the three if-statements inside the build method.

The details of our code generation algorithm is shown in
Figure 7, which contains three routines, Driver, GenClas-
sImpl, and GenMethodFromEvent. The following explains
each routine in detail.

The Driver routine takes a single parameter, input,
which contains a set of FSM (an example of which is shown
in Figure 3) and abstraction interface (an example of which
is shown in Figure 5) specifications. This routine examines
each FSM specification and applies type checking to make

template <class T>
class CountRefHandle
{

private:
int* count; T* obj;

private:
void destroy() {...}
void share(const CountRefHandle& that) {...}
void init(T* t) {...}

public:
......
void build(const T& t)
{

if (obj!=0&&count!=0&&(*count)>1) {
(*count) = -1+(*count);
init(t.Clone());

}
else if (obj!=0&&count!=0&&(*count)==1)
{
destroy();
init(t.Clone());

}
else if (obj==0&&count==0) {
init(t.Clone());

}
return ;

}
......

};

Figure 6: Skeleton of auto-generated C++ class im-
plementation

sure that each FSM is properly defined. After constructing
a symbol table for each FSM, it then takes each abstraction
interface specification from input, finds the FSM specifica-
tion for the abstraction, generates a class implementation
based on both specifications, and returns the resulting class
implementations.

The GenClassImpl routine is invoked by the Driver
routine to generate C++/Java class implementations from
three input parameters, symTab, the symbol table that con-
tains definitions of all relevant FSMs; fsm, the FSM speci-
fication for the current class; and impl, the abstraction in-
terface specification for the current class. It generates the
class implementation via the following steps.

1. Initialize the class body (clsBody in Figure 7) to in-
clude a private member variable declaration for each
FSM variable.

2. Extend the class body to include a private method
definition for each FSM action. All action methods
return void, as illustrated in Figure 6.

3. Generate C++/Java statements for autonomous tran-
sitions that are not triggered by any event. These tran-
sitions need to be evaluated at the end of all event
method bodies.

4. Compute relevant information for generating event meth-
ods. In particular, eventMap maps each event name
to all the transitions triggered by it, and accessMap
maps each event name to its encapsulation control
(e.g.,protected vs. public).

5. Extend the class body to include constructor meth-
ods. Each constructor is generated from an FSM event
by invoking the GenConstructorFromEvent routine,

Driver(input)
/*type checking and symbol table construction*/
for each FSM spec. fsm in $input$

symTab[fsm.name] = GenSymTabFromFSM(fsm);
res = null;
for each abstraction spec. $impl$ in $input$

fsm=find_FSM(symTab,impl);
res=Append(res,GenClassImpl(symTab[fsm],fsm,impl));

return res;

GenClassImpl(symTab, fsm, impl)
1. /*generate member variable decls */

clsBody=GenMemberVars(symTab,fsm);
2. /*generate a private method for each FSM action*/

clsBody=GenMethodFromActions(clsBody,symTab,fsm);
3. /*transitions not triggered by any event*/

autoTrans=ImplAutonomousTrans(symTab,fsm);
4. /* map event names to relevant info.*/

eventMap=MapEvent2Transitions(fsm)
accessMap=MapEvent2AccessCtrl(impl);

5. for each event name nm in impl.constructors
clsBody=GenConstructorFromEvent
(clsBody,nm,symTab,eventMap,autoTrans,accMap);

6. if (impl has named destructor event nm)
clsBody=GenDestructorFromEvent
(clsBody,nm,symTab,eventMap,autoTrans,accMap);

7. for each event name nm in fsm
clsBody=GenMethodFromEvent
(clsBody,nm,symTab,eventMap,autoTrans,accMap);

8. clsBody=PostProcess(clsBody,impl);
9. return ClassImpl#(impl.name,impl.typeParams,clsBody);

GenMethodFromEvent(clsBody,name,symTab,
eventMap,autoTrans,accMap)

evDef=symTab[name]; //find def. of event
symTab=PushSymTabFromParams(evDef.pars,symTab);
body=null;
for each transition t in eventMap[name]

t_cond=GenConditionFromTrans(symTab,t);
t_body=GenStmtsFromTrans(symTab,t);
body=GenIfElseStmt(symTab,t_cond,t_body,body);

body=Append(body,autoTrans);
method=Method#(name,evDef.pars,body,evDef.return);
return Append(clsBody,AccessCtrl#(method,accMap[name]));

Figure 7: Algorithm for generating class implemen-
tations

which is similar to the GenMethodFromEvent rou-
tine in Figure 7 except that all transitions triggered
by the constructor event must start from the default
state of the fsm (e.g., the default state of the FSM in
Figure 3 is objIsNULL).

6. Extend the class body with a destructor method if
necessary; that is, if the interface specification impl
includes a destructor event name. The routine GenDe-
structorFromEvent is similar to the GenMethodFromEvent
routine except that the destructor method has a dif-
ferent name.

7. Extend the class body to include a member method
for each event in fsm. This is done by invoking the
GenMethodFromEvent routine (also defined in Fig-
ure 7).

8. Post process the class body to satisfy any additional
specifications in impl.

9. Generate a complete class implementation and return
the result. The ClassImpl#(name,typeParams,clsBody)

GenNuSMV(symTab,fsm)
1. /*gather memories referenced in fsm states*/

traceThis=MemoryRefsInStates(symTab,fsm);
2. /*gather the conditions that trigger each transition*/

condMap=MapTrans2Conditions(symTab,fsm);
3. /* compute alias info. of pointer variables */

for each pointer variable x in traceThis
tracePtr[x]=GatherModInTranstions(symTab,fsm,x);
aliasMap[x]=GatherAliasedVars(tracePtr[x]);

4. /* compute mod info. from transitions */
for each memory ref x in traceThis

modMap[x]=MapModInTransitions(symTab,fsm,x,aliasMap);
5. /* gather external references in modMap and condMap*/

traceExtern=
GatherExternRefs(modMap) ∪ GatherExternRefs(condMap);

6. /* generate SMV variable declarations*/
smvVars=traceThis ∪ traceExtern ∪ fsm.eventNames ∪ “state”;
smvBody=GenVarDeclInSMV(symTab,fsm,smvVars);

7. /* generate initialization of SMV variables */
initVars=traceThis ∪ “state”;
smvBody=GenVarInitInSMV(smvBody,symTab,fsm,initVars);

8. /* generate state transitions */
cases={Case#(condMap[t],t.to) ∀ t ∈ fsm.transitions}
smvBody=GenAssignInSMV(smvBody,“state”,cases);

9. /* generate variable modifications */
for each x in traceThis

cases={GenCaseInSMV(symTab,x,modMap[x][t],tracePtr[x],
condMap[t]) ∀ t ∈ fsm.transitions}

smvBody=GenAssignInSMV(smvBody,x,cases);
10. /* generate properties */

for each s in fsm.states
GenPropertyInSMV(smvBody,symTab,s.name,s.cond);

Figure 8: Algorithm for generating SMV code

notation constructs an AST node named ClassImpl
which can be unparsed with proper syntax in either
C++ or Java. For details on the construction and un-
parsing of AST nodes, see Section 2.

The GenMethodFromEvent routine of the algorithm
takes several parameters, including clsBody(the current class
body), event name, symTab(the symbol table), eventMap
(which maps each event name to transitions triggered by
it), autoTrans (statements that implement transitions not
triggered by any event), and accMap (which maps each
event name to its access control). The routine first finds
the event declaration from symTab and extends the symbol
table with new type information on the event parameters.
It then builds the body of the event method by generating
a if-statement for each transition triggered by the event. In
particular, the if-condition for each transition t considers
both the boolean expressions associated with each source
states of t and any additional constraints expressed in the
cond attribute of t. The true branch of the if-Statement
is generated from the action attribute of t, and the false
branch includes the remaining statements that implement
other triggered transitions. Finally, the method body is ex-
tended with statements in autoTrans, and a method decla-
ration with proper access control is appended at the end of
the given clsBody.

The algorithm in Figure 7 is correct because it accurately
reflects the semantics of our iFSM languages.

5. VALIDATING CORRECTNESS
The key idea of our iFSM language is to provide a higher

traceThis={obj,count,val(count)};
tracePtr[count]={(build,new),(copy,that.count),(modify,new)}
tracePtr[obj]={(build,t.Clone),(copy,that.obj),(modify,obj.Clone)}
aliasMap[count]={CountRefHandle.count};
aliasMap[obj]={CountRefHandle.obj}

/*trans1: from objisNULL to objIsUnique triggered by build*/
modMap[obj][trans1]=(build,t.Clone());
modMap[count][trans1]=(build,new);
modMap[val(count)][trans1]=1;
condMap[trans1]={count==null && obj==null}

/*trans2: from objisNULL to objIsShared triggered by copy*/
modMap[obj][trans2]=(copy,that.obj);
modMap[count][trans2]=(copy,that.count);
modMap[val(count)][trans2]=(copy,val(that.count))+1;
condMap[trans2]={count==null && obj==null && (copy,that.obj)!=null

&& (copy,that.count)!=null && (copy,val(that.count))>=1}

/*trans3: from objisUnique to objIsNULL triggered by reset*/
modMap[obj][trans3]=0;
modMap[count][trans3]=0;
condMap[trans3]={obj!=null && count!=null && val(count)==1}

Figure 9: Partial evaluation results of the Figure 8
algorithm for the Figure 4 FSM specification

level concept over program control flow in the implementa-
tions of object oriented abstractions. In particular, the dec-
laration of control states explicitly categorizes the infinite
runtime states of an OO object so that conditional branches
within a method implementation can be expressed as state
transitions triggered by external events. The explicit cat-
egorization of runtime states and the absence of arbitrary
branches not only make the semantics of the implementa-
tion much easier to understand, they allow various proper-
ties of the OO abstractions to be more easily validated. As
a proof of concept, we show how to automatically validate
the correctness of control state abstractions in FSM specifi-
cations. We are working on automatically validating other
properties of OO abstractions, e.g., the aliasing of pointers
and the shapes of data structures.

To validate the correctness of a FSM specification, we use
another code generation algorithm, shown in Figure 8, to
automatically translate iFSM specifications into the input
language for a model checker, NuSMV [16]. Both code gen-
eration algorithms are implemented using the POET system,
discussed in Section 2.

The goal of the code generation algorithm in Figure 8 is
to validate the correctness of all the state transitions in an
iFSM specification. In particular, it tries to validate that

For each state transition trans declared to go
from one control state state1 to another state2,
if the runtime state of the memory satisfies both
the boolean expression associated with state1 and
the cond expression associated with trans, then
after modifying memory by evaluating the ac-
tions of trans, the runtime state of memory sat-
isfies the boolean expression associated with the
state2.

Our algorithm therefore must generate SMV code that sep-
arately implement each transition through the tracing of
control states and through direct modifications to memory.
It must then use LTL (Linear Temporal Logic) properties
to reconcile the results of implementing each transition via
both approaches.

The code generation routine GenNuSMV in Figure 8 takes
two parameters, symTab, the symbol table generated by
the driver routine in Figure 7; and fsm, the finite state
machine specification to validate. The algorithm follows the
validation strategy through the following steps.

1. Gather memories referenced in boolean expressions as-
sociated with the control states of fsm. These memory
stores must be traced in the model checking language
(the SMV language) to validate the correctness of tran-
sitions. Therefore a SMV variable must be created for
each of them. For example, in the FSM specification in
FIgure 3, the memory stores referenced in the control
states include obj, count, and val(count) (the derefer-
ence of the pointer variable count). These memory
references are collected into the variable traceThis,
shown in Figure 9.

2. Gather the triggering conditions for each transition.
Specifically, the algorithm builds an associative table
(condMap) that maps each transition t to its trigger-
ing conditions, which include both the boolean expres-
sions associated with the source states of t and any
additional constraints expressed in the cond attribute
of t. The triggering condition is computed by calling
the GenConditionFromTrans function as shown in the
GenMethodFromEvent routine of Figure 7. Figure 9
shows the resulting condMap for some of the transi-
tions in Figure 3.

3. Compute pointer aliasing information. First, for each
pointer variable x in traceThis, gather all the values
that have been assigned to x by each transition de-
fined in fsm. Each value is represented using a pair
(ev, exp), where ev is the triggering event of the tran-
sition, and exp is the new value assigned to x. If the
transition has no triggering event, a pair must be cre-
ated for each event of the fsm. The resulting traceP tr
table for both the count and obj variables in Figure 3 is
shown in Figure 9. The algorithm then further exam-
ines each traceP tr collection to extract all the member
variables of FSMs that can be aliased with x. The re-
sult is shown in the aliasMap table in Figure 9.

4. For each memory reference x in traceThis, compute
the new value assigned to x by each transition. In par-
ticular, the MapModInTransitions routine builds an as-
sociative table for x by going over each transition t in
fsm and mapping t to the last value assigned to x by
statements in t.action (the action attribute of t). Note
that this routine collects only the last value assigned
to x by each transition; that is, it does not trace inter-
mediate modifications within transactions (e.g., modi-
fying x to be null before giving it another value). Some
of the resulting modMap is shown in Figure 9 for var-
ious transitions.

Because no branching instruction is allowed inside tran-
sitions, if a variable x is modified within the transition,
a unique expression can be determined to be the new
value for x if there is no ambiguity on modifying mem-
ories that may be aliased to x. The aliasing ambiguity
is determined by examining aliasMap. If an ambigu-
ity exists, a set of new values for x is returned if all
potential modifications can be captured. The valida-
tion fails if an aliasing ambiguity cannot be precisely
modeled.

5. Gather all the external expressions that have been
used to as new values for variables in traceThis (i.e.,
expressions in modMap) or have been used to build
triggering conditions of transitions (i.e., expressions in
condMap). An SMV variable need to be created for
each of these expressions, which are collected into the
traceExtern variable in Figure 8.

6. Generate SMV variable declarations. In particular,
a SMV variable is generated for each expression in
traceThis or tranceExtern. Further, a SMV variable
is generated for each event name, and a special vari-
able named state is generated to explicitly trace the
state transitions.

7. Initialize SMV variables that need to be traced. Note
that we categorize the SMV variable generated above
into two groups. The first group includes the special
state variable and variables in traceThis. These vari-
ables need to be initialized, and their values will be
controled by transition relations. The rest of variables,
which comprise the second group, are not controlled
by state transitions and are therefore left uninitialized
so that the model checker will enumerate all possible
values for them.

8. Generate state transitions. In particular, the state
variable is modified based on the transition declara-
tions in fsm.

9. Generate memory modifications. In particular, each
variable x in traceThis is modified based on transition
declarations in fsm; i.e., based on the values stored in
modMap[x].

10. Generate LTL (Linear Temporal Logic) properties to
validate state transitions. In particular, a property is
generated for each control state s to validate that at
any point of runtime, the state variable equals to s if
and only if the boolean expression associated with s
evaluates to true.

The algorithm in Figure 8 shows how to validate a sin-
gle FSM specification. For multiple related FSMs, SMV
code can be generated that collectively model their behavior
through the interaction of events. Using our iFSM language,
the aliasing of a pointer variable can be easily resolved if the
variable is never passed outside for modification. We expect
this case to be true almost universally in reality, as keeping
critical variables private is the standard practice of object
oriented programming.

The SMV code generated from our FSM specifications is
rather simple when compared with those required for vali-
dating typical software design properties. However, we argue
that validating the correctness of software implementations
is an extremely hard problem and is in general not solv-
able. Our approach has made the problem easier to tackle
by allowing developers to explicitly declare abstractions of
control states and the transitions between control states.
Through the FSM specification, we no longer need to han-
dle program control flow and instead only need to reason
about each transition independently. The separation of con-
cern makes it possible to precisely determine the possible
new values for each variable.

Our algorithm in Figure 8 aims to validate that the transi-
tion declarations of a FSM specification are consistent with
its state declarations. It does not guarantee the complete

correctness of FSM specifications in terms of other proper-
ties. Software developers may specify additional properties
in our iFSM language for validation. We are working on
supporting such capabilities.

6. EXPERIMENTAL RESULTS
We have used our iFSM language to specify the imple-

mentations of several object oriented abstractions and have
produced correct implementations for each abstraction in
both Java and C++ when applicable. In particular, these
abstractions include:

• Two finite state machine abstractions which are con-
trived to test our code generation algorithm. Both
Java and C++ code are generated for these abstrac-
tions.

• A reference counting based smart pointer abstraction
manually written in C++ for a compiler project [47].
A FSM specification was manually written for this ab-
straction, and a new C++ implementation is automat-
ically generated. The FSM specifications and the auto-
generated C++ class are shown in Figures 3,4,and 6. A
Java class is not generated for this abstraction because
Java does not allow explicit memory management by
developers.

• Two iterator classes in C++ taken from the same com-
piler project. The first is a single item iterator class
that provides an iterator interface for a single item; the
second is a multi-iterator class which combines two it-
erator interfaces into a single one. Both C++ and Java
classes are auto-generated for these abstractions.

Our goal is to show that the auto-generated class im-
plementations perform as well as alternative implementa-
tions manually written by professional C++/Java develop-
ers. Since all of our manual implementations are in C++,
we compare the performance of auto-generated C++ code
with their manually written counter parts. Figure 10 shows
the result of comparison.

We have manually written a C++ driver function to mea-
sure the performance of each C++ class. For each class, the
driver builds a large array of class objects and then invoke
public methods of the objects a large number of times (pro-
portional to the array size). Two executables are generated
for each class by linking the same C++ driver with different
class implementations: the auto-generated implementation
and the manually written implementation.

We have compiled all the C++ code using g++ 4.2.0 with
-O2 option. The elapsed time of each executable is measured
on an Intel 2.16 GHz Core2Duo processor with 1GB 667MHz
memory and 4MB L2 cache. The performance results are
reported in Figure 10.

From Figure 10, we see that all the auto-generated C++
code perform similarly as the manually written one. In par-
ticular, the auto-generated iterator class implementations
consistently performed slightly better than the manually
written ones, while the auto-generated reference counting
class implementation performed slightly worse than the man-
ually written one. The differences are minor and are likely
caused by random factors in the compiler.

7. RELATED WORK

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

2000 4000 6000 8000

poet-multi
manual-multi
poet-single
manual-single
poet-refcount
manual-refcount

Figure 10: Performance (elapsed time in seconds) of
abstraction implementations when used in arrays of
different sizes

We present a code generation approach which aims to fill
the gap between high-level software design and low-level ef-
ficient implementations. While numerous projects [33, 35,
45] have automatically produced program implementations
from finite state machine specifications, these implementa-
tions target finite state machine abstractions in specialized
domains, e.g., embedded systems. In contrast, our goal is
not generating implementations of finite state machine ab-
stractions. Instead, we use a finite number of control states
to abstract the infinite number of runtime states within
general-purpose OO abstractions. We then use state transi-
tions to specify the implementation of general-purpose OO
abstractions without explicitly managing control flow.

Program transformation tools have long been used to ana-
lyze, modify, reshape, and optimize existing code, including
re-documenting/re-implementing code, reverse engineering,
changing APIs, and porting to new platforms [10, 4, 24]. A
number of translation systems [7, 9, 39, 23, 25] can auto-
matically generate programs from formal specifications such
as system design model [43], mathematical formulations [22,
9], reflection of metadata and code [21], design patterns [14]
and dataflow graphs [41]. Several general-purpose transfor-
mation languages and systems have been developed [31, 20,
13, 5] and some have been widely adopted [13, 5]. These
tools and systems mostly rely on pattern-based transforma-
tion rules coupled with application strategies [39, 23, 13, 5,
31, 25]. Although these rules are convenient to use and easy
to learn, they are limited in their capability to express arbi-
trary program transformations. Our work is based on a more
complete transformation language, POET, which supports
compound data structures, arbitrary control flow, and re-
cursive functions. We focus on combining program transfor-
mation with software verification technology to ensure both
correctness and efficiency of generated code.

Generative programming is a software engineering paradigm
that focuses on effective configuration and integration of cus-
tomized reusable software [18, 46, 8] and automatic adapta-
tion of software components [29] in the context of product-
line and model-driven architectures [12, 44]. Our research
also aims at automatic software construction, but we focus
on generating implementations of individual object-oriented
abstractions instead of integration and adaptation of exist-
ing software components.

Model driven development [44, 32] captures important as-
pects of a software system through models [26, 27, 28] before
producing executable code [1, 3, 2, 34, 6]. There have been

research work [30, 36, 1, 3, 2] and successful commercial tool
suites, including IBM Rational Rose, Telelogic SDT, and i-
Logix STATEMATE, that support aspects of Model Driven
Engineering, such as software modeling and code genera-
tion. However, most of these systems provide only the sim-
plest analysis capabilities, such as consistency checking and
simulation, and most produce only skeletons of C++/Java
code. Our work provide tools that combine UML diagrams
with additional semantic descriptions to fully automate the
generation of object-oriented implementations.

Formal methods have then be used widely to validate the
correctness of both system design and implementations [11,
17, 42, 37, 15, 38, 19]. We use the NuSMV [16] model checker
to validate the abstraction of state transitions in our iFSM
language.

8. CONCLUSIONS
This paper presents a general purpose code transforma-

tion system to automate the generation of efficient imple-
mentations from high-level specifications of object oriented
abstractions. Our approach aims to automatically bridge
the gap beteen software design using high-level specification
languages (e.g., UML) and software implementation using
lower level programming languages (e.g., C++,Java). Our
current iFSM language uses a finite number of summary
states to categorize the infinite number of different values
that each member variable of an OO abstraction may have.
Through the specification of state transitions, developers no
longer need to explicitly manage program control flow in low
level OO pogramming languages such as C++ and Java. We
have shown that this approach produces implementations
that are as efficient as those manually written by develop-
ers and that the absence of branches allows implementation
details of the abstraction to be easily validated for correct-
ness.

9. REFERENCES
[1] Implementing uml statechart diagrams. Pathfinder

Solutions. www.PathfinderMDA.com.

[2] Metamill 4.0. www.metamill.com.

[3] Umodel. Altova Inc. http://www.altova.com/.

[4] R. Akers, I. Baxter, M. Mehlich, B. Ellis, and
K. Luecke. Re-engineering c++ component models via
automatic program transformation. In Twelfth
Working Conference on Reverse Engineering. IEEE,
2005.

[5] O. S. Bagge, K. T. Kalleberg, M. Haveraaen, and
E. Visser. Design of the CodeBoost transformation
system for domain-specific optimisation of C++
programs. In D. Binkley and P. Tonella, editors, Third
International Workshop on Source Code Analysis and
Manipulation (SCAM 2003), pages 65–75,
Amsterdam, The Netherlands, September 2003. IEEE
Computer Society Press.

[6] K. Balasubramanian, A. S. Krishna, E. Turkay,
J. Balasubramanian, J. Parsons, A. Gokhale, and
D. C. Schmidt. Applying model-driven development to
distributed real-time and embedded avionics systems.
international journal of embedded systems. special
issue on Design and Verification of Real-time
Embedded Software, April 2005.

[7] R. Balzer, N. Goldman, and D. Wile. On the
transformational implementation approach to
programming. In ICSE ’76: Proceedings of the 2nd
international conference on Software engineering,
pages 337–344, Los Alamitos, CA, USA, 1976. IEEE
Computer Society Press.

[8] D. S. Batory, C. Johnson, B. MacDonald, and D. von
Heeder. Achieving extensibility through product-lines
and domain-specific languages: A case study. In
International Conference on Software Reuse, pages
117–136, 2000.

[9] F. L. Bauer, B. Möller, H. Partsch, and P. Pepper.
Formal program construction by
transformations-computer-aided, intuition-guided
programming. IEEE Trans. Softw. Eng.,
15(2):165–180, 1989.

[10] I. D. Baxter. Using transformation systems for
software maintenance and reengineering. In ICSE ’01:
Proceedings of the 23rd International Conference on
Software Engineering, pages 739–740, Washington,
DC, USA, 2001. IEEE Computer Society.

[11] H. Berg, W. Boebert, W. Franta, and T. Moher.
Formal Methods of Program Verification and
Specification. Prentice Hall, 1982.

[12] J. Bosch. Design and use of software architectures:
adopting and evolving a product-line approach. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 2000.

[13] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and
E. Visser. Stratego/xt 0.16. a language and toolset for
program transformation. Science of Computer
Programming, 2007.

[14] F. J. Budinsky, M. A. Finnie, J. M. Vlissides, and
P. S. Yu. Automatic code generation from design
patterns. IBM Syst. J., 35(2):151–171, 1996.

[15] S. Chaki, E. Clarke, and A. Groce. Modular
verification of software components in c. Transactions
of Software Engineering, 1(8), Sept. 2004.

[16] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia,
M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. NuSMV Version 2: An OpenSource Tool
for Symbolic Model Checking. In Proc. International
Conference on Computer-Aided Verification (CAV
2002), volume 2404 of LNCS, Copenhagen, Denmark,
July 2002. Springer.

[17] E. Clarke and J. Wing. Formal methods: state of the
art and future directions. ACM Computing Surveys,
28(4):626–643, Dec. 1996.

[18] J. C. Cleaveland. Building application generators.
IEEE Software, 5(4):25–33, 1988.

[19] M. Das, S. Lerner, and M. Seigle. Esp: path-sensitive
program verification in polynomial time. In PLDI ’02:
Proceedings of the ACM SIGPLAN 2002 Conference
on Programming language design and implementation,
pages 57–68, New York, NY, USA, 2002. ACM.

[20] M. Erwig and D. Ren. A rule-based language for
programming software updates. SIGPLAN Not.,
37(12):88–97, 2002.

[21] M. Fähndrich, M. Carbin, and J. R. Larus. Reflective
program generation with patterns. In GPCE ’06:
Proceedings of the 5th international conference on
Generative programming and component engineering,

pages 275–284, New York, NY, USA, 2006. ACM
Press.

[22] M. S. Feather. A system for assisting program
transformation. ACM Trans. Program. Lang. Syst.,
4(1):1–20, 1982.

[23] P. Freeman. A conceptual analysis of the draco
approach to constructing software systems. IEEE
Trans. Softw. Eng., 13(7):830–844, 1987.

[24] Y. Futamura, Z. Konishi, and R. Glück. Wsdfu:
program transformation system based on generalized
partial computation. The essence of computation:
complexity, analysis, transformation, pages 358–378,
2002.

[25] D. Garlan, L. Cai, and R. L. Nord. A transformational
approach to generating application-specific
environments. In SDE 5: Proceedings of the fifth ACM
SIGSOFT symposium on Software development
environments, pages 68–77, New York, NY, USA,
1992. ACM Press.

[26] J. A. Goguen and R. M. Burstall. Institutions:
abstract model theory for specification and
programming. J. ACM, 39(1):95–146, 1992.

[27] J. Gray, T. Bapty, and S. Neema. Handling
crosscutting constraints in domain-specific modeling.
In Communications of the ACM, pages 87–93, October
2001.

[28] M. Groe-Rhode, F. P. Presicce, and M. Simeoni.
Formal software specification with refinements and
modules of typed graph transformation systems. J.
Comput. Syst. Sci., 64(2):171–218, 2002.

[29] C. Haack, B. Howard, A. Stoughton, and J. B. Wells.
Fully automatic adaptation of software components
based on semantic specifications. In Proceedings of the
9th International Conference on Algebraic
Methodology and Software Technology, pages 83–98,
London, UK, 2002. Springer-Verlag.

[30] D. Harel. From play-in scenarios to code: An
achievable dream. IEEE Computer, 34(1):53–60, 2001.

[31] S. S. Huang, D. Zook, and Y. Smaragdakis. Statically
safe program generation with safegen. In Generative
Programming and Component Engineering, 2005.

[32] A. Kleppe, J. Warmer, and W. Bast. MDA Explained:
The Model Driven Architecture Practice and Promise.
Addison Wesley, 2003.

[33] A. Knapp and S. Merz. Model checking and code
generation for uml state machines and collaborations.
In Proc. 5th Wsh. Tools for System Design and
Verification, pages 59–64, 2002.

[34] A. Kogekar, D. Kaul, A. Gokhale, P. Vandal,
U. Praphamontripong, S. Gokhale, J. Zhang, Y. Lin,
and J. Gray. Model-driven generative techniques for
scalable performability analysis of distributed systems.
In In Proceedings of the NSF NGS Workshop,
International Conference on Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2006.

[35] J. R. Levine, T. Mason, and D. Brown. Lex & Yacc.
O’Reilly & Associates, 1992.

[36] S. Maoz and D. Harel. From multi-modal scenarios to
code: Compile LSCs into AspectJ*. ACM Press, 2005.

[37] S. Narayanan and S. A. M. Simulation. verification
and automated composition of web services. In In

Proceedings of 11th World Wide Web Conference,
pages 77–88, 2002.

[38] G. C. Necula. Proof-carrying code. In Proceedings of
the 24th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 106–119,
New York, NY, USA, 1997. ACM Press.

[39] J. Neighbors. Software construction using components,
1980.

[40] J. Niu, J. M. Atlee, and N. A. Day. Composable
semantics for model-based notations. In the 10th
SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE-10), pages
149–158. ACM Press, 2002.

[41] H. Oh and S. Ha. Efficient code synthesis from
extended dataflow graphs for multimedia applications.
In Design Automation Conference, 2002.

[42] S. OWRE, J. RUSHBY, and N. SHANKAR. Pvs: A
prototype verification system. In In Eleventh
International Conference on Automated Deduction
(CADE), 1992.

[43] I. Sander and A. Jantsch. Transformation based
communication and clock domain refinement for
system design. In DAC ’02: Proceedings of the 39th
conference on Design automation, pages 281–286, New
York, NY, USA, 2002. ACM Press.

[44] R. Soley and O. S. S. Group. Model driven
architecture, 2000.

[45] A. Wasowski. On efficient program synthesis from
statecharts. In LCTES ’03: Proceedings of the 2003
ACM SIGPLAN conference on Language, compiler,
and tool for embedded systems, pages 163–170, New
York, NY, USA, 2003. ACM.

[46] D. M. Weiss and C. T. R. Lai. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.

[47] Q. Yi. Transforming Complex Loop Nests For Locality.
PhD thesis, Rice University, 2002.

[48] Q. Yi. The poet language manual, 2008.
www.cs.utsa.edu/ qingyi/POET/poet-manual.pdf.

[49] Q. Yi, K. Seymour, H. You, R. Vuduc, and
D. Quinlan. Poet: Parameterized optimizations for
empirical tuning. In Workshop on Performance
Optimization for High-Level Languages and Libraries,
Mar 2007.

[50] Q. Yi and C. Whaley. Automated transformation for
performance-critical kernels. In ACM SIGPLAN
Symposium on Library-Centric Software Design,
Montreal, Canada, Oct. 2007.

