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Abstract— Communication privacy techniques that pro-
tect the locations of source sensor nodes and sink nodes
from either global or local adversaries have received
significant attention recently. The improvement in capture
time, which is the time it takes for an adversary to
identify the location of the source, is often estimated using
simulations. In this paper, we present probabilistic models
to analyze the expected capture time of source sensor nodes
for recently privacy protocols against (1) local adversary
using phantom routing, and (2) global adversary using
statistically strong source anonymity (SSA). Using these
models, we show that both phantom routing and SSA fall
short of achieving high degree of anonymity. The phantom
source routing improves the capture time over normal
routing methods, but falls short of possible upper bounds
on expected capture time. SSA is prone to simple time
correlation attack by a global adversary; even with a large
number of dummy message transmitted by non-source
nodes, the propagation of one real message from source
to sink will be sufficient to identify the source with almost
no false positives. Based on these findings, we suggest a
simple modification to SSA that increases the false positive
rate to nearly 90 percent and thus the capture time.

I. INTRODUCTION

Communication privacy in wireless sensor networks
(WSNs) has received significant attention in recent years.
The motivation is to protect the source sensor nodes, the
nodes that generate messages whenever events of interest
occur or tagged valuable assets are in close proximity,
or the destinations of the messages (usually, the sinks).
Even when the message confidentiality and integrity are
ensured with end-to-end encryption and authentication
techniques, an adversary may be able to analyze the
traffic flows and identify source sensor nodes and thus
capture the tagged assets.

Several protocols that attempt to preserve communica-
tion privacy have been proposed to protect against local
or global of adversaries. In a local adversary model, the
adversary has limited hearing range, which is usually a
multiple of sensor nodes’ transmission range and covers

a small portion of the whole network [1]. In a global
adversary model, the adversary can hear any packet
transmission over the entire network by either having
high gain network equipment or deploying a set of small
hostile sensors over the whole network and obtaining
transmissions cooperatively [2].

There are two main forms of traffic analyses: message
timing and message counting. In the timing analysis
attack, the adversary attempts to identify the potential
routes, sources and sinks based on the timestamps of
transmissions by different sensors. For a packet sus-
pected to be carrying a real message, an adversary
can determine not only the location of sender using
triangulation techniques but also that of the receiver
because the receiver will react quickly to the packet it
receives, e.g. forwarding further, in most of the cases.
Therefore, the adversary can determine the directions of
source and sink nodes. With a local adversary model,
several such real events must be observed and analyzed
by the adversary to locate the source; a global adversary,
with the availability of timestamps of all transmissions,
needs just one occurrence of a real event to completely
analyze the route from the source to sink. Several papers
proposed techniques to mitigate this attack by diversify-
ing routing path in the case of local adversary models or
by camouflaging real packets in a sea of dummy packets
in the case of a global adversary.

In the message counting attack, the adversary attempts
to detect and capture the sink by counting the number of
transmissions occurred at each location since the sensors
closer to sinks are likely to more real transmissions. This
can be effectively countered by having a large number of
dummy packet transmissions to ensure that the transmis-
sion events by nodes are statistically indistinguishable.

Though several interesting communication protocols
to mitigate local and global adversaries have been pro-
posed [3], [1], [4], [5], [6], [7], [8], [2], capture time
(CT)—the time taken by the adversary to correctly iden-
tify the location of a source node—is mostly estimated



using simulations.
In this paper, we analyze two representative privacy

protocols that protect source sensor nodes from either
local or global adversary, who can launch attacks via
timing or counting analysis, using both probabilistic
analysis and simulation proof. The protocol against local
adversary to be analyzed is called phantom routing [1],
which directs real packets to some fake sources, called
phantom sources, through random walk and followed
by shortest path routing. The protocol against global
adversary to be analyzed in called statistically strong
source anonymity (SSA) [2].

We develop a probabilistic analysis to determine the
expected capture time (CT ) for both phantom routing
and SSA. In particular, we show that the capture time is
significantly longer than the published simulation anal-
ysis and verify our analysis with simulations. For SSA,
we show that it, although being claimed to be against
message counting analysis, is vulnerable to message
timing analysis in order to meet a required end-to-end
message delay. A simple message timing analysis is
proposed to launch such an attack, through which there
are virtually no false positives. Based on these findings,
we propose a simple modification to SSA to increase the
false positive rate to nearly 90% and, thus, improve the
capture time.

The rest of the paper is organized as follows. Section
II introduces some of the communication privacy pro-
tocols proposed in literature followed by a description
of network model, attack models, and security goal of
this paper. Section III analyzes capture time of local
adversary strategies. Section IV provides capture time
analysis of global adversary strategies based on a sim-
ple proposed adversary strategy. Simulation results are
shown in Section V. A modification of SSA is proposed
and proved by simulations as well. Then we concludes
the paper in Section VI

II. BACKGROUND

In this section, we describe recent results on communi-
cation privacy protocols and present the network model,
the attack models, and the security goals.

A. Related Work

Protection of both source node and sink node privacy
are addressed in literature. In this paper, we are interested
in the source privacy [1], [2], [3], [4], [6], [8]. We do
not address sink privacy [5], [7].

Phantom routing [1] protects source nodes from a
local adversary. It first uses a random walk for hwalk

hops to send the data packet to a node called phantom
source. From the phantom source, the packet can be sent
by either probabilistic flooding or single-path routing
to the sink. This is one of the early results on privacy
communication in WSNs.

The recently proposed statistically strong source
anonymity (SSA) protocol addresses the issue of source
privacy under attack by a global adversary, who can
monitor the traffic in the entire network [2]. This is
achieved by making all sensors in the network send
either real of dummy packets according to an exponential
distribution. The real packets reporting an event are
propagated quickly to sinks by triggering transmission
of such events within a specified time limit. The dummy
packet injection intervals are adjusted so that the ad-
versary cannot identify source nodes with a statistical
analysis of packet transmission intervals.

The idea of dummy packet transmission and maintain-
ing the same transmission rate of all nodes to protect
sources from global adversaries are also introduced in
[5].

B. Network Model

We assume that sensors are deployed with approxi-
mately uniform density in a rectangular field with one
or more sinks. There are one or more sources reporting
sensed data to the sink. We consider wireless sensor
networks in which sensors periodically alternate between
active mode, during which a node senses, receives, pro-
cesses and transmits messages, and sleep mode, during
which a node shuts down most of the functionality except
the circuitry necessary to retain memory and wake up
at the appropriate time. Since most applications require
sensors to respond within seconds or minutes of the
occurrences of events of interest, having a low duty cycle
(percentage of the time a sensor node is active) with
sleep time adjusted to satisfy application response time
constraints improves the overall network lifetime. Long
sleep durations and clock drift can make sensor unsyn-
chronized; this can be mitigated using any of the existing
synchronization techniques proposed in the literature
[9], [10], [11], [12]. Furthermore, the synchronization
techniques are designed such that sensors come out of
sleep mode in a staggered manner: nodes that are farthest
wake up first followed by their parents (next hop nodes
on the route to sinks) next, and so on. The time gap
between the wake up time of a node and its parent is
often called the offset. This pattern ensures that a packet
injected by a source can reach sink without encountering
any sleeping node [12].
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All data payloads are of the same size and are en-
crypted with suitable nonces at each hop using suitable
encryption/dectryption and key management techniques
[13], [14], [15]. Therefore, the adversary can neither
understand the contents of a payload nor distinguish the
same payload transmitted by two different nodes.

C. Privacy Metrics

We use capture time (CT), the time it takes to identify
a source correctly, and the number of capture attempts
(CAs) as the figures of merit or evaluation criteria for
privacy protocols.

A capture attempt is the identification of potential
source by the adversary and the physical examination
of the location of the node to capture the intended
tagged asset or gather additional information of an event
occurrence. A capture attempt at a sensor node that did
not send a real message is a false positive, which must
be minimized.

The capture time is a function of CAs, the true
positive rate, and the rate at which the real events are
generated. The first two factors are strongly impacted by
the anonymous communication protocol and the attack
strategy, respectively, while the third factor is application
specific and is an independent variable in our analysis.

D. Attack Models

Attacks on source location privacy by either local or
global adversaries are considered in this paper. A local
adversary (LA) has a radio hearing range equal to a
multiple of the radio range of sensor nodes. The LA
is equipped to locate the source of any transmission it
hears. A common and realistic adversary model consid-
ered in literature and used in this paper is the patient
adversary (PA) model, similar to algorithm 1 in [1],
[16]. It is assumed that PA does not know a priori the
locations of sensor nodes and that PA starts at the sink,
and moves towards a sensor node upon the first hearing
of a transmission in the current active period.

A global adversary (GA), used in [2] for example, has
the capability to overhear transmissions by all sensor
nodes and identify the geographical locations of the
senders. Furthermore, the GA has the resources to store
the necessary information regarding the transmissions–
timestamps, estimated location, etc.–and process them
using various methods to identify sources.

In the worst case, the adversary cannot get any clue to
move towards the real source. Therefore all the adversary
can do is to randomly pick any node in the network
and check it. We call this adversary a random adversary

(RA). We also define RA-e as a random adversary who
eliminates examined node from further consideration.
The RA and RA-e are not real adversary models, but
they help to analyze CT.

E. Security Goal

A privacy communication protocol should signifi-
cantly increase the false positive rates of CAs by the
adversary to increase its exposure. This also increases
the expected source capture time (CT ) for a given event
generation rate. We use CT as a figure of merit to
evaluate communication security protocols.

III. CT ANALYSIS OF LOCAL ADVERSARY

STRATEGIES

In this section, we analyze phantom routing proposed
by Kamat et al. [1], as a typical technique against LA,
and present an analytical model to evaluate CT for this
protocol.

A. Expected capture time

Let RA denote a random adversary who can select
one sensor node out of n at random, examine it and, if
it is not a source, leave it undisturbed. Therefore, picking
the source by RA is a sequence of Bernoulli trials with
P(success) = p = 1

n , where p denotes the probability
function and n is the number of sensor nodes. Let X
be the random variable to indicate number of capture
attempts (nodes suspected and checked) by the adversary
before detecting a source node. Then X is a geometric
random variable. Therefore, P(X = k) = (1−p)k−1p, k ≥
1. The average value taken by X , µX = 1

p = n. This is
the expected capture time. Let RA-e denote the adversary
who never picks an already rejected node. Then X is a
uniform random variable and µX = n+1

2 ≈ n
2 .

Since an RA does not use any intelligent processing
of transmission contents and their timings, these bounds
may be considered the best possible capture times for
the network. Any adversary that uses transmission timing
analysis is likely to have lower expected capture time.

B. Application of CT bounds

We now estimate the expected capture times by RA
and RA-e for the networks considered for phantom rout-
ing [1]. These networks are described by the following
parameters.
• Network size: 6000× 6000 m2

• Number of nodes: 10000
• hwalk = 10
• avgneighbor = 8.5
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Fig. 1. Phantom routing, case 1

Therefore, the average number of nodes in a radio
range is 9.5. If r is the radio range, then 1000πr2

6000×6000 = 9.5.
Solving the equation gives r = 104 m.

Two cases were simulated in [1]. In the first case, the
sink is 8 hops away from the real source, while it is 34
hops away in the second case. In both cases, the patient
adversary (PA) model and single-path routing are used.

For easier description, imagining that sensors are
located on different bands centered by the source node
based on their hop distances to the source, we define
phantom source circle as the circle in which all nodes
are hwalk hops away from the real source and may
potentially be selected as phantom sources with equal
probability. Therefore, the first case corresponds to the
situation where the adversary is within the phantom
source circle; the second case corresponds to the situ-
ation where the adversary is outside the phantom source
circle. We estimate the expected capture times by RA
and RA-e in each case.

1) Adversary is inside the phantom source circle:
Figure 1 depicts case 1. The node in the middle is the real
source and the triangle represents the RA-e adversary.
We define sink circle as the circle in which all nodes
have the same hop distance to the real source as the
hop distance between the sink and the real source. The
outermost circle is phantom source circle. In the worst
case, from the network defender’s point of view, the RA-
e adversary checks only the nodes in the sink circle or
nodes closer to the source. There are π((8×104)2)×10000

6000×6000 =
604 nodes to be examined. So the expected capture time
with RA-e is 302.

2) Adversary is outside the phantom source circle:
In case 2, shown by Figure 2, the adversary from A,
where the sink is located. All the nodes within the

A

C

B

D

E

Fig. 2. Phantom routing, case 2

indicated circle may be involved in the random walk
phase. Since packets are transmitted using single-path
routing in the second phase, the nodes that are involved
in the transmissions are inside the area ABCD. Similar
to the analysis given above, the lowest expected capture
time occurs when the adversary checks only the nodes
within this cone and the circle.

The area ABED can be calculated by subtracting the
sector CBED from the quadrangle ABCD. First of all,
we need to calculate the angle ∠BCD.

∠BCA can be measured by knowing the distance
|AC| and the radius of the circle, 10. So ∠BCA =
cos−1(10

34) ≈ 73◦. Thus we have ∠BCD = 146◦.
Since ∠ABC = ∠ADC = 90◦, |AB| = |AD| =√
342 − 102 = 32.5 hops = 3380 m.
Therefore, the number of nodes in region ABED is

3380×1040− 146
360
×π×10402

3600 = 593.
And the number of nodes in the phantom circle is

π×10402

3600 = 944.
So an RA-e adversary has an expected capture time

of 593+944
2 = 769.

Without phantom routing, the expected capture times
for the two cases are 8 cycles and 34 cycles, respectively.
The phantom routing improves the expected capture time
to 33 cycles and 91 cycles (The reported safety period
in [1] are 32 and 90). This means that phantom routing
does improve the expected capture time by a RActor of 3
to 4. However, the calculations of expected CT for RA-e
indicate that the timing analysis used by a PA works in
the adversary’s RAvor despite phantom routing.

IV. CAPTURE TIME ANALYSIS OF GLOBAL

ADVERSARY STRATEGIES

In this section, we analyze expected source capture
time of global adversary, using SSA protocol [2] as
an example. To counter against an omnipotent global
adversary, SSA requires sensor nodes to transmit two
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types of messages: dummy messages based on a Poisson
process with λd as the message rate or 1/λd as the
inter-message delay (IMD), and real messages, which
carry real event data, according to a Poisson process
with event rate λe. To avoid long delays in reporting real
events to sinks, sensing of a real event or receiving a real
message from a downstream node triggers a real message
by the source or next hop, respectively, within some
specified time limit or upper bound β. To camouflage
these triggered events, care is taken to space dummy
event transmissions such that overall IMDs by any node
in the WSN is approximately exponentially distributed
with parameter λd. It is claimed and shown using sim-
ulations that, though a global adversary can hear all
transmissions and has the computational resources to
perform any analysis needed, it is incapable of reliably
identifying source locations since statistically all nodes
are indistinguishable [2]. In the remainder of the section,
we develop a probabilistic analysis technique for a global
adversary to estimate CT .

We focus on the 2β-events, which are the instances of
consecutive transmissions by a node within 2β seconds.
The 2β-events can be dummy events triggered by a
node’s dummy packet transmission within 2β seconds
of its most recent transmission or real events triggered
by real packet transmissions. The probability, pd, that a
dummy packet is sent within 2β of a previous transmis-
sion by the node can be calculated using the CDF of the
exponential distribution.

pd = 1− e−2βλd (1)

Let X be the random variable (RV) for the time
elapsed between a previous transmission by a node and
either the occurrence of a real event or the arrival of a
real message from a downstream node. Let Y be RV for
the time it takes to trigger a real message transmission
by this node. Note that X and Y are independent
RVs. We are interested in p, the conditional probability
P (X +Y ≤ 2β|Y ≤ β). This requires the integration of
the joint-pdf of X and Y for the range (0, 2β). We can
also estimate its lower bound as follows.

p = P (X + Y ≤ 2β |Y ≤ β)

≥ P (X ≤ β|Y ≤ β) · P (Y ≤ β|Y ≤ β)

= P (X ≤ β) · 1, since Y must be ≤ β

∴ p ≥ 1− e−βλe (2)

Thus, preal, the probability that an observed 2β-event,
was triggered by a real event is

preal =
p

p + pd
. (3)

To see the significance of (3), let us consider some
of the parameter values used in [2]: 1/λd = 20 seconds
and 1/λe = 20 seconds.

Since β is not specified, we estimate a suitable value
for the same. Suppose that the radius of a WSN (with
a sink as the center) is 20 hops and that the sink needs
to be informed when an event occurs within 2 seconds.
A typical packet transmission time with Zigbee medium
access control protocol and TOSSIM message payloads
is about 2 ms [12]. Since SSA imposes forwarding within
β seconds (or, approximately, within an average of β/2
seconds), we have

20 · (2 ms +
β

2
ms) ≤ 2000 ms ⇒ β ≤ 196 ms.

We use β = 0.196 seconds in our analysis. Then,

pd = 1− e−0.392/20 = 0.0194

p ≥ 1− e−0.196/20 = 0.0098, and

preal = 0.0098/(0.0098 + 0.0194) ≈ 1/3.

Therefore, if a global adversary focuses only on the 2β-
events, then one third of the corresponding transmissions
are real packet transmissions. This significantly reduces
the search space for the adversary.

Furthermore, the time limit of β seconds to inject
or propagate a real packet results in significant time
correlations of the transmissions by the nodes in the path
taken by a real packet to reach a sink. On the other hand,
if a dummy packet transmitted by a node, say ni, triggers
a 2β-event, the probability that ni’s neighbor will also
transmit a dummy or real packet within β seconds of
ni’s transmission is low, about 0.01.

We propose the following adversary strategy that
combines these observations to detect sources.
Statistical Adversary (SA): The statistical adversary
(SA) is a global adversary who records all timestamps of
all transmissions and checks their distribution properties
using Anderson-Darling or Kolmogorov-Simirnov tests
to detect nodes that deviate from exponential distribution
pattern for inter-message delays as described in [2]. SA
supplements this with 2β-event detection logic. When
a 2β-event is found, SA further analyzes the previous
and future message transmission timestamps and geo-
graphical locations to construct a β-chain. A β-chain is
a sequence of nodes n1, ..., nk that have transmissions
at times t1, t2, ..., tk satisfying the following properties:
(a) the node, say nj , that caused the 2β-event, at time
tj , is part of the chain; (b) ni and ni+1, 2 ≤ i ≤ k, are
within each other’s radio range; and (c) ti−ti−1 ≤ β+δ,
where 2 ≤ i ≤ k and δ is a small value about 2-10 ms
to account for delays induced by medium access control
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event Heard(Node x) {
1. TS[x][0] = TS[x][1]
2. TS[x][1] = time()
3. foreach node ni ∈ NODE{
4. if(ni is a downstream neighbor of nx

5. && ni in a suspected chain l
6. && TS[x][1]-TS[i][1]≤ β + δ){
7. Append nx to l
8. found = TRUE
9. }
10. }
11. if(found == FALSE &&TS[x][1]-TS[x][0]≤2β)
12. srcLocate(x, 1) // See Figure 4
}

Fig. 3. Pseudocode to detect 2β-event and construct β-chain
involving node nx. TS[x] keeps the time stamps of the most recent
two transmission of nx. NODE is the set of all nodes in the sensor
network. L is the set of all suspected chains in the sensor network
and l is a member of this set. SA determines the ID of the node that
transmitted a message and calls this function. If nx is not part of a
β-chain currently being constructed and transmitted within β seconds
of a current β-chain head, the this node is appended to the list to
form the new head. Otherwise, the timestamps of nx are checked
and, if applicable, a 2β-event is triggered and srcLocate() is called
to construct a new β-chain from the source to nx.

protocol and channel contention. SA treats each β-chain
of 3 or more nodes as the route of real packet propagation
to the sink with n1 as the source and the sink within the
radio range of nk.

The pseudocodes to identify a 2β-event and construct
the corresponding β-chain by SA are given in Figures 3
and 4.

We conclude this section with an estimation of CT .
Recall that we used

p ≥ 1− e−λeβ,

see (2), to denote the probability that the occurrence of
a real event or reception of a real message results in an
observable 2β-event.

Let p1 be the probability that a real 2β-event occurs at
least once in the propagation of an event to sink. Then,
p1 = 1− (1− p)h.

The observation of a real event occurrence as a 2β-
event may be modeled as a Bernoulli trial with p1 as
the probability of success. Then the number of expected
real events that must occur before the detection of a 2β-
event is the expectation of a modified geometric random
variable with parameters p1 and is given by 1/p1 − 1.

Then the expected capture time is

CT = (
1
p1
− 1) · 1

λe
.

If we assume an average of h = 10 hops for the
route used by a real event to reach sink (the scenario we

int srcLocate(int x, int timepos){
1. int i, j, ret, neighbor = 0, pos = 1
2. float diff = 0, minTime = β + δ
3. foreach node i ∈ NODE{
4. if(i is a downstream neighbor of x){
5. for(j = 0; j ≤ 1;j++){
6. diff = TS[x][timepos]-TS[i][j]
7. if(diff < minT ime){
8. neighbor = i
9. pos = j
10. minTime = diff
11. }
12. }
13. }
14. }
15. if(neighbor 6= 0) {
16. ret = srcLocate(neighbor, pos)
17. Append nx to L[ret]
18. return ret x
19. }else{ // found the β-chain source
20. Initialize L[x] with nx

21. return x
22. }
}

Fig. 4. Construction of β-chain from the source to the node that
triggered 2β-event. The transmissions heard until now are used to
construct this part of the β-chain. The foreach loop identifies the
most likely predecessor of the current node that must have sent a real
packet. It recursively goes to the last possible node, and constructs
the β-chain l, which will be a member of the set L[], during the
return from recursive calls in the if-then part of the code.

simulated and discussed in Section V), then p = 0.0098,
p1 = 0.094, and CT = 193 seconds.

V. SIMULATION RESULTS

We used the TOSSIM simulator to verify the capture
time predictions given by the analytical model in Section
IV and to gain additional understanding of SSA and SA.
TOSSIM [17] simulates Crossbow MicaZ [18] like motes
with TinyOS 2.0.1 [19].

We used a 12 × 12 grid of 144 sensor nodes with
one sink at the top left corner of the grid. The nodes
are numbered 1, ..., 12 for the first row, 13, ..., 24,
for the second row, and so on. Node 1 is the sink. To
reduce the occurrence of real 2β-events, we used a single
source node—44 in one set of simulations and 101 in
another set. (The simulation scenarios described later in
this section show that having multiple real sources does
not affect the detection capability by the adversary.)
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The real events arrive at the source node at the rate
λe = 1

20 per second. All nodes transmit dummy packets
with exponentially distributed IMDs with a mean of
1/λd = 20. The simulation runs until 500 real packets
are received by the sink. TOSSIM is modified to print
a single line of timestamp and other information for
each (dummy as well as real) transmission during the
simulation.

A program based on the pseudocodes given in Figures
3 and 4 and mimics SA’s timing analysis is fed with the
TOSSIM output. The SA program reads each line only
once and prints detected 2β-events and the corresponding
β-chains. The number of 2β-events—real and dummy,
β-chains of length 3 or more, the false positive rate—
fraction of the instances false sources are identified, and
the source detection rate—fraction of the instances the
source is correctly identified are given in Figure 5.

A total of 1000 real events are injected in the two
simulations with two different sources; 117 instances
of them are correctly identified and the corresponding
sources are located. So CT = 1000/λe

117 = 1000∗20
117 = 171

seconds. In Section IV, we estimated the CT for this
case to be 193 seconds. We believe that the difference
may be attributed to the approximation we used to
calculate p.

Enhancing SSA

Based on our capture time analysis, it is clear that
any solution that attempts to directly increase CT require
the increase of the time-limit to trigger real packet
forwarding by intermediate nodes. Such a modification
must consider the event-deadlines imposed by the ap-
plication supported by WSN. However, independent of
the application requirements, a simple modification to
SSA can be used to significantly increase CAs and the
false positive rates. This in turn makes the adversary,
who would like to remain undetected for long periods,
cautious and effectively increases the capture time.
Modification: We require each node that injects a
dummy packet marks it with some probability pm as
”must forward”. These dummy packets will be propa-
gated to the sink just like real packets with β seconds
time limit for retransmissions by intermediate nodes.

The modification significantly increases the false pos-
itive rate. To verify this, we reran the simulations with
the modification to SSA and analyzed the output with the
program that implements SA’s timing analysis. SA iden-
tified nearly all instances of injection of real packets and
dummy packets marked for must-forward. (This shows
that multiple true sources can be accurately identified

by SA.) However, checking all such nodes significantly
increases the false positive rates. The results presented in
Figure 6 indicate that the false positive rate is 86% when
5% of dummy packets are marked as must-forward; the
number of CAs will also increase from 53 to 430, more
than 8 times. The false positive rates and the number of
CAs are significantly higher with higher dummy packet
marking probabilities.

VI. CONCLUSIONS

Communication privacy protocols that effectively hide
the timing and locations of occurrences of real events
are needed to protect WSNs from resourceful adversaries
who can overhear transmissions in the entire network and
employ detailed timing analysis techniques to identify
the source nodes and sinks. In this paper, we investigated
the effectiveness of two typical communication privacy
protocols proposed recently that attempts to hide sources
from either a local or a global adversary. Phantom rout-
ing, as an example against local adversaries, randomly
routes packets to phantom sources and all packets follow
shortest path from phantom sources, thus increasing the
capture time. On the other hand, SSA, as an example
against global adversary, makes nodes send dummy
transmissions which can camouflage an occasional real
packet transmissions.

We presented a detailed probabilistic model to analyze
the expected capture time against both LAs and GAs.
Our analytical model lead to a highly effective analysis
strategy by an adversary.

Finally, we presented a simple but very effective
improvement to SSA to increase the false positive rates
experienced by the adversary by more than 8-fold. In fu-
ture, we intend to develop more communication privacy
protocols for more realistic scenarios in which sensors
have low duty cycles and sleep most of the time.
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2β-events Detected β-chains with 3+ nodes β-chains
starting

False
Positive

Source
Detection

Source Total Dummy Real Dummy Real at source Rate Rate

44 822 769 53 0 53 53 0/53 =0.0 53/53 = 1.0

101 794 729 65 0 65 64 1/65 = 0.015 64/65 = 0.985

Fig. 5. Detected dummy and real 2β-events and β-chains by SA. The adversary constructs a β-chain for each detected 2β-event, and checks
only the nodes identified as sources of β-chains with 3 or more nodes. False positive rate is the fraction of the sources falsely identified as
sources. True positive rate is the fraction of instances the source is correctly identified. The data from two simulations each with a different
source node are indicated.
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