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ABSTRACT
Motivation: DNA methylation plays important roles in cancer, which
is a complex disease involving many genes. However, by far DNA
methylation analysis has not been integrated with the gene / protein
networks that regulate various biological processes within the cell.
Here, we developed a novel computational method to analyze whole-
genome DNA methylation data for endometrial tumors within the
context of a human protein-protein interaction (PPI) network, in
order to identify subnetworks as potential epigenetic biomarkers for
predicting tumor recurrence. Our method consists of the following
steps. First, differentially methylated (DM) genes between recurrent
and non-recurrent tumors are identified and mapped onto a human
PPI network. Then, a PPI subnetwork consisting of DM genes and
genes that are topologically important for connecting the DMs on
the PPI network, termed epigenetic connectors (ECs), are extracted
using a Steiner-tree based algorithm. Finally, a random-walk based
machine learning method is used to propagate the DNA methylation
scores from the DMs to the ECs, which enables the ECs to be
used as features in a support vector machine classifier for predicting
recurrence.
Results: While the DMs are not enriched in any cancer-related
pathways, the ECs are enriched in many well-known tumorgenensis
and metastasis pathways and include known epigenetic regulators.
Moreover, combining the DMs and ECs significantly improves
the accuracy for classifying recurrence. Therefore, the network-
based method is effective in identifying a subnetwork consisting
of both differentially methylated genes and other important non-
differentially methylated genes which are nevertheless important for
the understanding and prediction of tumor recurrence.
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1 INTRODUCTION
Increasing evidence shows that DNAmethylation plays a significant
role in cancer, from the silencing of tumor suppressors to the
activation of oncogenes and the promotion of metastasis, as well
as the development of drug resistance (Huang and Esteller, 2010;
Kulis and Esteller, 2010). Though not altering DNA sequence itself,
this chemical modification may change chromatin structure that
renders the accessibility of promoters to transcriptional machinery
and regulate gene expression (Huang and Esteller, 2010; Kulis and
Esteller, 2010).
The advent of next-generation sequencing technology combined

with effective DNA methylation capture techniques is providing
an unprecedented opportunity for a system-level understanding of
methylation changes occurring in cancer and holds the promise of
establishing epigenetic biomarkers for accurate cancer diagnosis
and prognosis (Robinson et al., 2010; Serre et al., 2010; Huang
and Esteller, 2010). However, by far large-scale DNA methylation
analysis has not been integrated with the gene / protein networks that
regulate gene expression and signal transduction within the cell. In
transcriptomics-based cancer studies, it is frequently observed that
individuals of the same phenotype may share similar expression
patterns on the pathway level rather than the individual gene
level (Radivojac et al., 2008; Jonsson and Bates, 2006; Wang et al.,
2011; Vidal et al., 2011; Barabasi et al., 2011; Hidalgo et al., 2009;
Yildirim et al., 2007; Goh et al., 2007; Li et al., 2010); therefore it
has been increasingly realized that the underlying network topology
must be considered, in order to obtain more useful biological insight
from the “gene list” resulted from differential expression analysis
and to improve the performance of cancer outcome predictions.
With these critical observations and the fact that the majority of
human genes have not been assigned to definitive pathways, many
methods have been proposed to identify PPI subnetworks that
are significantly differentially expressed or dysregulated in certain
phenotypes as candidate pathway markers. This strategy has enabled
systematic discovery of novel pathways associated with multiple
diseases (Liu et al., 2007; Hwang et al., 2008; Geistlinger et al.,
2011; Chowdhury et al., 2011; Keller et al., 2009; Ulitsky et al.,
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2010; Kim et al., 2011; Hung et al., 2010). In addition, several
studies have proposed to use subnetworks as features to classify
phenotypes, where such subnetworks are usually treated as meta-
genes whose expression levels are defined as the mean expression
levels of its nodes (Chuang et al., 2007; Chowdhury et al., 2011;
Gatza et al., 2010; Lee et al., 2008).
Despite various levels of success, the current network-based

approaches face a few challenges. First, it is known that some
subnetworks are highly enriched in many disease subtypes, and
therefore may represent downstream effects of the phenotypes (i.e.,
they are passengers rather than drivers). Second, some phenotypes
are often associated with a huge number of genes that may have
been regulated by a small number of master regulators, while the
master regulators themselves may be buried in the long gene list
and be overlooked, or are even not detected by the chosen profiling
technique. Third, in many studies, subnetworks are used as meta-
genes which may contain genes whose activities are not expected
to change between phenotypes, and thus using their activities for
classification can add noise and potentially deteriorate classification
performance. Finally, subnetwork selection is usually done in a
supervised manner prior to the training of classifiers, and therefore
requires additional training samples and cannot be easily applied to
clustering.
We believe that network-based analysis can also be beneficial

or even necessary for epigenetic studies, as it is also true that
epigenetic regulation of the expression levels of different genes on
the same pathway may lead to the same phenotype; therefore, DNA
methylation patterns should also be compared on pathway level
rather than individual loci level. However, the above limitations to
the existing subnetwork-based methods for transcriptomic studies
also exist in epigenetic studies. Furthermore, as DNA methylation
data have their own characteristics, it is not known whether
the existing methods can be easily applied to identify epigenetic
subnetwork markers.
In this study, we propose a novel computational method to

analyze whole-genome DNA methylation data within the context
of a human protein-protein interaction (PPI) network, and to
identify subnetworks as potential biomarkers for predicting tumor
recurrence. Our method consists of the following steps. First,
differentially methylated (DM) genes between recurrent and non-
recurrent tumors are identified and mapped onto a human PPI
network. Then, a PPI subnetwork consisting of DM genes and genes
that are topologically important for connecting the DM genes on
the PPI network, termed epigenetic connectors (ECs), are extracted
using a graph algorithm for finding multiple Steiner trees (Jahid
and Ruan, 2012). As the ECs themselves may not necessarily be
differentially methylated, we propose a random-walk based machine
learning method to propagate the DNA methylation scores from the
DMs to the ECs, which effectively enables the ECs to be used as
biomarkers. Finally, the DM genes and the ECs are combined to
construct a support vector machine for classifying recurrent versus
non-recurrent tumors.
Applying our method to our unpublished high-throughput DNA

methylation data of a panel of 60 primary endometrial tumors and 12
normal controls determined by methyl-CpG binding domain-based
capture coupled with massively parallel sequencing (MBDCap-seq),
we identified a set of DM genes and ECs whose combination can
predict three-year tumor recurrence with an accuracy at 82.9%,
as compared to 73.4% using the DMs alone. Furthermore, the

ECs are significantly enriched with KEGG pathways well-known to
be involved in tumorgenensis and metastasis, and include several
known epigenetic regulators, signifying the effectiveness of our
approach.

2 MATERIALS AND METHODS
2.1 Raw data collection and processing
Endometrial tissue specimens (74 primary endometrioid endometrial
tumors and 12 uninvolved controls) were obtained as part of
our ongoing work on characterizing molecular alterations in
endometrioid endometrial carcinomas and were described in a
previous report (Huang et al., 2010). Global DNA methylation
pattern of the tumors and controls were surveyed using mthyl-CpG
binding domain-based capture (Rauch and Pfeifer, 2010) coupled
with massively parallel sequencing (MBDCap-seq; Robinson et al.
2010; Serre et al. 2010). Briefly, methylated DNA was eluted
by the MethylMiner Methylated DNA Enrichment Kit (Invitrogen)
according to the manufacturers instructions. Eluted DNA was used
to generate libraries for sequencing following the standard protocols
from Illumina. MBDCap-seq libraries were sequenced using the
Illumina Genome Analyzer II as per manufacturer’s instructions.
Image analysis and base calling were performed with the standard
Illumina pipeline. Sequencing reads were mapped by ELAND
algorithm. Unique reads were up to 36 base pair reads mapped to
the human reference genome (hg18), with up to two mismatches.
Reads in satellite regions were excluded due to the large number of
amplifications. The methylation level was normalized based on the
unique read numbers for each sample by a linear method.
The tumor differential methylation (TDM) score was then

calculated for each of the 13,081 known promoter CpG islands
for each tumor by comparing the average methylation level in a
8-kb window covering the CpG island in the tumor relative to
normal controls using one-sample t-test. For a CpG island that is
hypermethylated (over-methylated) in tumor relative to controls, the
TDM score is calculated as − log 10(p), where p is the p-value
resulted from the t-test. For a CpG island that is hypomethylated
(under-methylated) in tumor relative to controls, the TDM score is
calculated as log10(p). In both cases, p-values greater than 0.01 are
converted to 1 and as a result the corresponding TDM scores are
zero.
Detailed analysis of the complete DNA methylation data will

be published elsewhere, and the data will be submitted to Gene
Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo).

2.2 Epigenetic marker and epigenetic connector
subnetwork selection

In this step of the analysis, patients that had persistent tumors, or
had non-recurrent tumor but their last follow-ups were within three
years after surgery were excluded. As a result, a total of 60 patients
were available for analysis, among which 16 had recurrence within
3 years, and the remaining 44 are considered non-recurrent. This
dataset contains 4214 CpG islands that has non-zero TDM scores
for at least one patient.
To identify potential epigenetic markers for recurrence, genes

whose promoter CpG islands are differentially methylated between
the recurrent and non-recurrent patients were identified by
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comparing the TDM scores for each CpG island in the recurrent vs
non-recurrent tumors using two-sample t-test. Genes with a p-value
< 0.02 are termed differentially methylated (DM) genes.
Next, we mapped the DM genes to the human protein-protein

interaction network obtained from HPRD (Release 9) (Prasad et al.,
2009). We only took the largest connected component of the
network, which contains 9,205 unique genes (official gene symbols)
and 36,720 interactions.
We then sought to find a small number of genes that can connect

the DM genes into a singly connected component in the PPI
network. Intuitively, we are looking for the most parsimonious
solution, that is, a spanning tree that connects the DM genes with
the fewest additional genes. In graph theory, this maps to the
well-known Steiner tree problem. Formally, the Steiner tree for an
edge-weighted graph G = (V, E, w) and a subset of vertices S⊆V is
a minimum-weight connected tree T, with vertices U⊆V and edges
D⊆E that spans all vertices in S. Here the vertices in S are known
as terminal vertices and U-S as Steiner vertices. For an unweighted
graph G, the problem then becomes to find the minimum number of
vertices that can connect all the vertices in S through a tree in G.
The Steiner tree problem is NP-hard (Vo, 1992). We implemented a
polynomial-time 2-approximation shortest path heuristic algorithm
of Steiner tree problem (Rayward-Smith, 1983).
To improve the chance of finding all optimal Steiner vertices and

also to cover as many alternative paths as possible, we designed a
simple randomized algorithm to obtain multiple Steiner trees from
a given set of input nodes. To this end, we assign to each edge of
the PPI network a random weight between 0.99 and 1, and run the
Steiner tree algorithm. These random weights effectively break ties,
so that if there are two paths with the same weight in the original
network, one path will be chosen randomly. This procedure was
repeated multiple times with different random weights, until the
total number of unique Steiner vertices converges approximately.
In this work, the rate of new coming Steiner vertices reduced
significantly after 200-300 iterations. We pooled the Steiner vertices
in the 300 Steiner trees to obtain a set of unique genes, which we
termed epigenetic connectors (ECs), as they play important roles in
forming connections among the differentially methylated epigenetic
markers.

2.3 Using EC genes as biomarkers
The ECs, by the way they are selected, are not differentially
methylated between recurrent and non-recurrent tumors and
therefore one would argue that they may not have any value as
biomarkers. In our opinion, the ECs can be used in two ways in
assisting with the classification of recurrence. First, the ECs contain
a large portion of genes within the local neighborhood of DMs.
While the DMs are generally universally differentially methylated
between recurrent and non-recurrent, some of its neighbor genes
(i.e., genes in the same pathway) may be differentially methylated at
a level not considered statistically significant because, for example,
they may only have TDM scores for a few patients. In this case, the
combination of multiple weakly differentially methylated genes in
the same pathway may also contribute to the separation of recurrent
and non-recurrent. Second, as the ECs contain many topologically
important genes connecting the DMs, e.g., hub genes with large
connectivities or bottleneck genes connecting genes in different
subregions of the network, they may be functionally important for

the integrity of the DM subnetwork as well. For example, they may
contain genes that are directly regulating the epigenetic changes of
the DM genes or are functionally regulated by the DM genes. In
either case, those genes, although not differentially methylated per
se, may be considered as “proxies” to DM genes and can be utilized
in classification indirectly.
To utilize as biomarkers EC genes falling into the first category,

i.e., weakly differentially methylated genes, is relatively simple as
most classification algorithms can handle combinations of features
in some way. To deal with ECs genes falling into the second
category, i.e., topologically important non-differentially methylated
genes, we propose a novel machine learning algorithm to derive a
score for each EC, based on the topological property of the gene in
the network and its relative position with regard to all other genes.
The method is adopted from the random walk with restart (RWR)
algorithm (Tong et al., 2006) popular in machine learning and works
as follows.
First we construct a modified, directed PPI subnetwork

encompassing DMs and ECs so that the DM nodes do not have any
incoming edges. In order words, the DM genes can only “pump”
their TDM scores into the subnetwork but do not receive any scores.
The ECs on the other hand have edges in both directions so they can
act as both a donor and a receiver of TDM scores.
Formally, let A be the adjacency matrix of an unweighted,

directed graph, where A(i, j) = 1 if there is an edge from node
i to node j and 0 otherwise, and P be the row normalized adjacency
matrix (or the transition probability matrix) defined on the graph,
where pij =

Aij∑
j Aij

is the transition probability from node i to node
j. Assume that a random walker starts from a node v. At any discrete
time point k + 1, the probability for the random walker to take the
path from node i to node j is fk+1

ij (v) = F k
i (v)pij , where F k

j (v) is
the probability for the random walker to be at node j at time point k.
Evidently, without considering the probability to revisit the starting
node (hence “restart”), the probability to be at any node j for the
random walk started at v is F k

j (v) =
∑

i fk
ij(v) for any k. Now

considering that the random walker always has a probability c to
revisit the starting node v, we have F k

v (v) = (1− c)
∑

i fk
iv(v)+ c,

and F k
j (v) = (1 − c)

∑
i fk

ij(v) for all other j $= v. In our case c
is set to 0.5. This procedure is guaranteed to converge, as shown
previously (Tong et al., 2006). The stationary probability vector
F inf(v), or simply denoted as F (v), is the influence of node v on
any node in the network. Evidently if v has no incoming edges,
then Fv(v) = c and Fv(j) = 0 for any j $= v. This procedure is
repeated using each node as a starting node and the vector F (v) is
pre-computed for every v.
Now consider a particular tumor, t. Let si(t) be the TDM score

of the i-th gene on the DM-EC subnetwork for t. The random
walk based (RWB) score of gene i for t is calculated as: ri(t) =∑

v sv(t)Fi(v). It can be seen that for nodes with no incoming
edges, ri(t) = csi(t). In other words, the effect of this random walk
procedure to the DM genes is simply multiplying their TDM scores
by a constant factor c. Therefore at the end we simply multiplied all
the RWB scores by 1/c so that the TDM scores and RWB scores for
the DM genes are equivalent.

2.4 Classification and performance evaluation
Support vector machine (SVM) classifiers were built using the
implementation in WEKA 3.6.6 (Witten and Frank, 1999). A total
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of six classifiers were built, using as features (1) TDM scores of DM
genes, (2) TDM scores of EC genes, (3) TDM scores of DM and EC
genes, (4) TDM scores of DM genes and 474 randomly selected
genes on the PPI, (5) RWB scores of EC genes, and (6) TDM scores
of the DM genes and RWB scores of the EC genes.
Classification performance was estimated 100 times using 10-fold

cross-validation where iteratively one-tenth of the data were used for
testing and nine-tenth were for training. Classification accuracy is
defined as the percent of patients classified correctly. As the dataset
has much more non-recurrent patients than recurrent patients, we
also calculated kappa statistic, κ, which measures the agreement
between the class labels and the predictions made by the classifier,
corrected by the amount of agreement that may be achieved by
chance (Landis and Koch., 1977). Formally, let TP, TN, FP, and
FN be the numbers of true positive, true negative, false positive and
false negative predictions made by a binary classifier, respectively,
and N = TP + TN + FP + FN. The kappa static κ of the classifier
is defined as κ = A−C

1−C
, where A = TP+TN

N
is the fraction of

correctly predicted instances and C is the expected percentage of
instances that a classifier can predict correctly by chance, defined as

C =
TP + FP

N
×

TP + FN
N

+
TN + FN

N
×

TN + FP
N

.

Conventionally a kappa value over 0.75 is considered as excellent,
0.40 to 0.75 as good, and below 0.40 as poor.

3 RESULTS AND DISCUSSION
3.1 EC-subnetwork is enriched in cancer-related

pathways
We identified 135 DM genes (p < 0.02, see Methods) connected
by 474 EC genes (Fig. 1). Interestingly, most of the DM genes are
hyper-methylated in non-recurrent cancers, while a small number
of DM genes are hypo-methylated in recurrent cancers (Fig 2a).
Unlike the DM genes, the EC genes are not differentially methylated
between recurrent and non-recurrent cancers. Furthermore, many of
the ECs have no non-zero TDM scores or have scores in only a few
patients (Fig 2b), suggesting that DNA methylation change is not
a main regulatory mechanism for them. Among the 474 EC genes,
only 115 have a TDM score for at least one patient, and a mere
of 8 have TMD scores for at least half of the patients (Fig 2c). In
contrast, 68 of the 135 DM genes have TDM scores for at least half
of the patients.
These genes were then used for KEGG pathway enrichment

analysis by the Fisher’s exact test, using the size of the PPI network
as background for the ECs and the number of genes with non-zero
TDM scores for the DMs. Remarkably, while the DM genes are
not significantly enriched with any known KEGG pathways, the EC
genes are significantly enriched with many KEGG pathways that are
well known to be involved in tumorgenensis and metastasis, such as
GnRH signaling pathway (p < 1E-14), ErbB signaling pathway (p
< 1E-12), gap junction (p < 1E-12), Wnt signaling pathway (p <
1E-8) and TGF-β (p< 1E-6), among others (Table 1). Interestingly,
neurotrophin signaling pathway (p < 1E-14) and calcium signaling
pathway (p < 1E-13) are also among the top-enriched pathways.

Diffrentially methylated (DM) gene
Epigenetic connector (EC) gene
Protein-protein interaction

Fig. 1. A PPI subnetwork encompassing DM and EC genes.

Table 1. Enriched KEGG pathways in EC genes. Enrichment score is
calculated as -log10(p-value).

KEGG Pathway Score
hsa05200 Pathways in cancer 19.5
hsa04722 Neurotrophin signaling pathway 14.8
hsa04912 GnRH signaling pathway 14.0
hsa04020 Calcium signaling pathway 13.6
hsa04080 Neuroactive ligand-receptor interaction 13.1
hsa04012 ErbB signaling pathway 12.8
hsa04540 Gap junction 12.8
hsa04520 Adherens junction 12.4
hsa04062 Chemokine signaling pathway 11.3
hsa04510 Focal adhesion 10.5
hsa04010 MAPK signaling pathway 10.4
hsa04360 Axon guidance 10.1
hsa04144 Endocytosis 9.0
hsa04310 Wnt signaling pathway 8.6
hsa04530 Tight junction 8.1
hsa04110 Cell cycle 8.0
hsa04350 TGF-beta signaling pathway 6.4
hsa04270 Vascular smooth muscle contraction 6.2
hsa04920 Adipocytokine signaling pathway 6.2
hsa04620 Toll-like receptor signaling pathway 5.0
hsa04370 VEGF signaling pathway 4.8
hsa04810 Regulation of actin cytoskeleton 4.3
hsa04630 Jak-STAT signaling pathway 3.9
hsa04910 Insulin signaling pathway 3.4
hsa04621 NOD-like receptor signaling pathway 3.0
hsa04115 p53 signaling pathway 2.4

3.2 EC-subnetwork genes improve classification
accuracy

The ECs themselves are not able to predict recurrence (Fig
3, kappa statics < 0). This is understandable as they are not
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(d) Heatmap of RWB scores for EC genes

Fig. 2. Comparison between DM and EC genes.

differentially methylated, and many ECs have RDM scores only
for few patients (Fig 2c). Nevertheless, the combination of
ECs and DMs improved the classification accuracy significantly
compared to that of DMs alone (0.453 vs. 0.300, kappa statistic,
corresponding to 81.2% and 73.4% accuracy, respectively). Note
that this improvement cannot be explained by the increased number
of features, as combining DMs with 474 randomly seleccted
genes only result in minor increase of kappa (0.326) and accuracy
(74.4%). Therefore, the improvement of classification accuracy is
likely due to the combinatorial effect of DM and EC genes. One
possible explaination is that the DMs are universally differentially
methylated between recurrent and non-recurrent tumors; while
the methylation changes for ECs are patient specific and have
weaker statistical significance in terms of differentially methylation.
However, the combination of multiple weakly differentiated
methylated ECs within the same pathway can be complement to
the DM genes in the same pathway and improve classification
performance.

3.3 Random walk based scores for EC genes further
improve classification accuracy

Asmany of the metastasis-related genes do not show any differential
methylation changes between the recurrent and non-recurrent
tumors, we hypothesized that methylation changes may play a role
indirectly. One possibility is that the DNA methylation changes of
the DM genes may affect the functions of the ECs via protein-
protein interactions. Another possibility is the ECs may directly
regulate the epigenetic changes of the DMs. In either case, we
believe it is possible to measure the relevance between the DMs
and ECs based on the network topology. To this end, we used a
well-established random walk procedure to compute the probability
for a random walker starting at a DM gene to reach any EC genes.
The TDM scores of the DM gene is then distributed to the EC
genes according to these probabilities. As some of the ECs may also
have TDM scores, probabilities were also calculated for a random
walker starting at an EC gene to reach other EC genes and the ECs
may both distribute its methylation scores to other ECs and receive
distributions from other DMs and ECs. These are added together to
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Fig. 3. Classification performance using different types of features. EC*: RWB scores for the ECs are used. rand: randomly selected 474 genes.

derive the inferred methylation impact scores for all the ECs. This
procedure is repeated for each patient to obtain a random walk based
(RWB) score for each of the EC genes in that patient (see Method).
Fig. 5(a) shows the RWB scores of the DMs and ECs on the EC-
subnetwork for four selected patients, and Fig. 5(b) shows the
impact of these RWB scores on measuring the similarity between
patients. Before the random walk, the two recurrent patients had
a relatively low similarity compared to the similarity between the
non-recurrent and recurrent patients. After the random walk, the
similarities between the two recurrent patients and between the
two non-recurrent patients both increased, and at the same time
the similarities between the recurrent and non-recurrent patients
decreased, enabling a perfect separation between recurrence and
non-recurrence. Fig. 2(d) shows the RWB scores for all the ECs
in all patients. Evidently the score matrix is more dense than the
original EC TDM score matrix shown in Fig. 2(b). In fact, although
none of the ECs were differentially methylated at p-value < 0.02
according to the TDM scores, with the RWB scores, 203 (43%)
of the 474 ECs show statistically significant difference between
recurrent and non-recurrent tumors (p < 0.02, student’s t-test),
confirming that the random walk procedure is indeed effective.
These RWB scores for ECs are then used, either alone or

in combination with the TDM scores for the DM genes, to
construct a support vector machine classifier to separate recurrent
and non-recurrent tumors. As shown in Fig. 3, the performance
of the classifier constructed with the RWB scores for the ECs is
significantly higher than that of the original TDM scores for the
ECs, and even slightly better than that of the DM genes. This is
to some extent not surprising, as the RWB scores for the ECs are
derived from the TDM scores for the DMs. To see if indeed the ECs
provide any additional information other than as proxies to the DM
genes, we combined the TDM scores for the DMs and the RWB
scores for the ECs. As shown in Fig. 3, this indeed resulted in the
highest classification accuracy (kappa statistic 0.513 and accuracy
82.9%). Therefore, it is evident that RWB scores for the ECs provide
non-redundant, orthogonal information than the TDM scores of the
DM genes.

3.4 Analysis of significant DM and EC markers
To further understand the role of DM and EC genes as potential
biomarkers, we analyzed the normalized feature weights for each
of the genes used by the four classifiers based on DM, DM + EC,
EC*, and DM + EC*, respectively, where EC* means that the
RWB scores rather than the TDM scores are used for the ECs.
A larger magnitude of feature weight indicates that the gene is
more important for classifying the patients. For genes with positive
weights, their hyper-methylation is contributing towards recurrence,
and for genes with negative weights their hyper-methylation is
contributing towards non-recurrence.
Fig. 5 shows the weights for the genes with a normalized weight

≥ 1.5 or ≤ -1.5 in at least one classifier. Region I contains DM
genes, which may represent universal epigenetic markers. Region II
contains EC genes that had non-zero TDM scores in some patients
and contributed to the DM + EC classifier; these are EC markers
that are epigenetically reprogrammed in specific patients. Finally,
Region III contains EC genes that were not used by the DM+EC
classifier but had important contributions in the EC* or DM+EC*
classifiers. These EC genes themselves are not epigenetically
affected; however they are either regulating or regulated by the
universal or patient-specific epigenetic markers. As shown in Fig.
5, whenever a feature appears in multiple classifiers, the weights
in different classifiers usually have similar sign and magnitude,
confirming that the feature weight in support vector machine is a
robust measure for the importance of the feature.
Table 2 lists the top ten positively-weighted and negatively-

weighted genes from each of the regions described above. While
the role of the DM genes in metastasis is not clear, many of the ECs
in regions II and III are well known to have important functions
in cancer progression and metastasis, such as BRCA1, EPHB2,
ID2, ID3, SSTR2, SSTR3, SST, MYOD1, PAX3, HOXD10, and
SCT. Interestingly, two genes in region III(a), TLE1 and PARP1,
are known as epigenetic regulators (Ali et al., 2010; Althaus, 2005;
Caiafa et al., 2009), confirming our hypotheses that some of the
EC markers assume their functions by epigenetically regulating
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Fig. 4. Comparison between patient-specific networks

the DM genes. Many of the ECs are transcriptional regulators.
Their functions may have been regulated by the epigenetic changes
occurred in the DM genes whose protein products interact with
them.
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Fig. 5. Feature weights in four SVM-based classifiers for selected genes.
Colors depict the classifier from which the weight is obtained. Genes in
Region I are DM genes and are sorted by their weights in DM-based SVM
classifier; genes in Region II are ECs and are sorted by their weights in
DM+EC based classifier; genes in Region III are ECs and are sorted by their
weights in EC* based classifier.

Table 2. Top genes from each region in Fig. 5.

I(a) GALNTL6, FTHL17, ZFP3, SIX6, SPHKAP, POLA1,
NPY1R, EPHA5, C19orf34, GABRA2

I(b)
DYNC1I1, CYP26C1, NCRNA00087, ACSS1,
TSC22D3, KLHL13, NXPH2, ELK1, TOP3A,
ADRA1A

II(a) SCT, CAMKK1

II(b) SMC1A, UCN, SST, MYOD1, PAX3, KCNA4, SNCA,
TRPC3, HOXD10, EFNA5

III(a) PARP1, TXNDC17, AVPR1A, SPHK1, TLE1, AES,
CORT, PAX6, NFIC, AVPR2

III(b) EPHB2, COIL, STAU1, GSK3B, ID3, ID2, MCM6,
BRCA1, SSTR2, SSTR3

4 CONCLUSIONS
In this paper we have presented a novel network-based algorithm for
identifying biomarkers for predicting tumor recurrence from high-
throughput DNA methylation data. Our network-based algorithm
goes beyond the conventional differential analysis and seek to
find both biomarkers with insufficient statistical significance of
differential methylation but are within the local neighborhood of
the significantly differentially methylated genes, and genes that
are not differentially methylated but play important topological
roles in connecting the epigenetic markers in the protein-protein
interaction networks and therefore are assumed to have functional
significance in either regulating or being regulated by the DNA
methylation changes of the epigenetic markers. Our results show
that the network-based markers are significantly enriched in many
KEGG pathways well-known to be involved in tumorgenesis
and metastasis, and can be used to significantly improve the
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classification accuracy of recurrence, confirming our hypothesis. An
unique contribution of this work is that we showed even for the
genes without any epigenetic changes, which therefore cannot be
considered as epigenetic markers in conventionally analysis, can
be utilized to improve the classification performance, suggesting
that their functions may have been functionally disturbed by the
epigenetic changes of their protein-protein interaction partners.
Our method can be extended in several directions. First, for

the EC genes, currently we do not differentiate whether they are
regulated by the DM genes, or are regulating the methylation
changes of the DMs. This may be partially addressed by including
protein-DNA interaction networks where the directions between
some nodes can be determined. Second, it is known that markers
selected from different datasets for the same disease are usually
not comparable. Although our recent results on gene expression
data showed that the connectors selected based on Steiner trees are
much more robust than the genes selected based on differentially
expression (Jahid and Ruan, 2012), it seems that the classification
accuracy based on the connectors alone can be further improved.
We therefore would like to develop a general classification method
that do not depend on the DM genes. For example, after obtaining
the EC subnetwork, we may extend the subnetwork to include all
genes which are within certain distance to the subnetwork or satisfy
some other topological properties. Finally, it may be interesting to
combine computational derived subnetworks with subnetworks of
signaling pathways that are known to play important roles in specific
phenotypes such as metastasis.
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