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Abstract— We consider a set of real-time periodic tasks where
some tasks are preferably executed as soon as possible (ASAP)
and others as late as possible (ALAP) while still meeting their
deadlines. After introducing the idea of preference-oriented (PO)
execution, we formally define the concept of PO-optimality. For
fully-loaded systems (with 100% utilization), we first propose
a PO-optimal scheduler, namely ASAP-ensured earliest deadline
(SEED), by focusing on ASAP tasks where the optimality of tasks’
ALAP preference is achieved implicitly due to the harmonicity of
the PO-optimal schedules for such systems. Then, for under-
utilized systems (with less than 100% utilization), we show
the discrepancies between different PO-optimal schedules. By
extending SEED, we propose a generalized preference-oriented
earliest deadline (POED) scheduler that can obtain a PO-optimal
schedule for any schedulable task set. We further evaluate the
proposed PO-optimal schedulers through extensive simulations.
The results show that, comparing to that of the well-known EDF
scheduler, the scheduling overheads of SEED and POED are
higher (but still manageable) due to the additional consideration
of tasks’ preferences. However, SEED and POED can achieve
the preference-oriented execution objectives in a more successful
way than EDF.

I. INTRODUCTION

The real-time scheduling theory has been studied for
decades and many well-known scheduling algorithms have
been proposed for various task and system models. For in-
stance, for a set of periodic tasks running on a uniprocessor
system, the rate monotonic (RM) and earliest-deadline-first
(EDF) scheduling policies are shown to be optimal for static
and dynamic priority based preemptive scheduling algorithms,
respectively [10]. With the main objective of meeting all the
timing constraints, most existing scheduling algorithms (e.g.,
EDF and RM) prioritize and schedule tasks based only on their
timing parameters (e.g., deadlines and periods). Moreover,
these algorithms usually adopt the work conservation strategy
(that is, the processor will not idle if there are tasks ready for
execution) and execute tasks as soon as possible (ASAP).

However, there are occasions where it can be beneficial
to execute tasks as late as possible (ALAP). For example,
to provide better response time for soft aperiodic tasks, the
earliest deadline latest (EDL) algorithm has been developed
to execute periodic tasks at their latest times provided that all
the deadlines will still be met [5]. By delaying the execution
of all periodic tasks as much as possible, EDL has been
shown to be optimal where no task will miss its deadline if

the system utilization is no more than one [5]. By its very
nature, EDL is a non-work-conserving scheduling algorithm:
the processor may remain idle even though there are ready
tasks. On the other hand, for fixed-priority based schemes,
dual-priority (DP) scheduling was developed [6]. In that work,
periodic tasks with hard deadlines start at lower priority levels
and, to ensure that there is no deadline miss, their priorities
are promoted to higher levels after a fixed time offset. Again,
the main objective was to improve the responsiveness of soft
aperiodic jobs, that are executed at the medium-priority level
by default.

Such selectively delayed execution of tasks can be useful for
fault-tolerant systems as well. For example, to minimize the
overlap between the primary and backup tasks on different
processors (and thus save energy), the execution of backup
tasks should be delayed as much as possible [9], [14]. In fact,
EDL has been exploited to schedule periodic backup tasks on
the secondary processor to reduce the overlapped execution
with their primary tasks for better energy savings [9].

Note that, the well-known scheduling algorithms generally
treat all periodic tasks uniformly. They normally schedule tasks
solely based on their timing parameters either at their earliest
(e.g., with EDF and RM) or latest times (e.g., with EDL
and DP). However, neither of them can effectively handle
tasks with different preferences. For example, when backup
tasks (whose primary tasks are on different processors) are
scheduled with another set of primary periodic tasks in a
mixed manner on one processor [8], [14], the execution of
backup tasks needs to be postponed as much as possible while
the primary tasks should be executed as soon as possible
for better performance (our Appendix includes more detailed
discussions). Moreover, for mixed-criticality task systems [1],
[3], we may also give high-criticality tasks the preference of
running early. This makes it possible to discover large amount
of slack at earlier time, which could be further exploited to
provide better service to low-criticality tasks [13].

Therefore, we believe that there is a strong incentive to
develop effective scheduling algorithms for periodic tasks with
different preferences. To the best of our knowledge, such
algorithms have not been well studied in the literature yet. One
may consider adopting the hierarchical scheduling approach
to solve such problems, where tasks with the same preference
form a task group and the high-level scheduler would deter-
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mine only how to schedule different task groups [11], [12].
However, the existing hierarchical scheduling frameworks con-
sider mostly work-conserving algorithms (such as EDF and
RM) at both parent and child scheduling components, and
it is not obvious how the framework can be generalized to
non-work-conserving algorithms (such as EDL) and comply
with tasks’ different execution preferences. Hence, we focus
on single-level scheduling algorithms in this work.

In this paper, for a set of periodic tasks running on a
uniprocessor system where some tasks are preferably exe-
cuted as soon as possible (ASAP) and others are prefer-
ably executed as late as possible (ALAP), we introduce the
concept of preference-oriented execution and propose corre-
sponding optimal scheduling algorithms. Specifically, we first
formally define preference-oriented (PO) optimality concept
for periodic tasks with ASAP and ALAP preferences, and
distinguish its two variants. We show the harmonicity of
PO-optimal schedules for fully-loaded systems (with 100%
utilization) where optimally attaining the ASAP preference of
tasks implicitly indicates that the ALAP preference of other
tasks is also optimally satisfied. However, for under-utilized
systems (with utilization being less than 100%), there may
exist discrepancies between different PO-optimal schedules.

Then, by taking tasks’ ASAP preference into consideration
when making scheduling decisions, we propose an optimal
ASAP-ensured earliest deadline (SEED) scheduling algorithm
for fully-loaded systems, where the optimality of tasks’ ALAP
preference is achieved implicitly due to the harmonicity of
their PO-optimal schedules. Moreover, for under-utilized
systems, by extending SEED and explicitly managing the
spare capacity (i.e., idle time), we propose a generalized
preference-oriented earliest deadline (POED) scheduling
algorithm that can obtain a PO-optimal schedule for any
schedulable task set. Finally, the evaluation results through
extensive simulations show that, with manageable scheduling
overheads (less than 35 microseconds per invocation for up
to 100 tasks), the SEED and POED schedulers can obtain
superior performance in terms of achieving tasks’ preference
objectives when comparing to that of the well-known EDF
scheduler.

The remainder of this paper is organized as follows. Sec-
tion II presents system models and preliminary notations. In
Section III, we formally define the optimality of different
preference-oriented schedules and show their harmonicity and
discrepancies for fully-loaded and under-utilized systems, re-
spectively. The optimal SEED scheduling algorithm for fully-
loaded systems is proposed and analyzed in Section IV.
The generalized POED scheduler is addressed in Section V.
Section VI presents and discusses the evaluation results. Sec-
tion VII concludes the paper.

II. PRELIMINARIES

We consider a set of n periodic real-time tasks Ψ =
{T1, . . . , Tn} to be executed on a single processor system.
Each task Ti is represented as a tuple (ci, pi), where ci is its

worst-case execution time (WCET) and pi is its period. The
utilization of a task Ti is defined as ui = ci

pi
. The system

utilization of a given task set is the summation of all task
utilizations: U =

∑
Ti∈Ψ ui.

Tasks are assumed to have implicit deadlines. That is, the
jth task instance (or job) of Ti, denoted as Ti,j , arrives at time
(j−1) ·pi and needs to complete its execution by its deadline
at j · pi. Note that, a task has only one active task instance at
any time. When there is no ambiguity, we use Ti to represent
both the task and its current task instance.

In addition to its timing parameters, each task Ti in Ψ is
assumed to have a preference to indicate how its task instances
are ideally executed at run-time. The preference can be either
as soon as possible (ASAP) or as late as possible (ALAP).
Hence, based on the preferences of tasks, we can partition
them into two sets: ΨS and ΨL (where Ψ = ΨS ∪ ΨL),
which contain the tasks with ASAP and ALAP preferences,
respectively.

A schedule of tasks essentially shows when to execute which
task. We consider discrete-time schedules. More formally, a
schedule S is defined as:

S : t → Ti

where 0 ≤ t and 1 ≤ i ≤ n. If a task Ti is executed in
time slot [t, t + 1) in the schedule S, we have S(t) = Ti.
Furthermore, a feasible schedule is defined as the one where
no task instance misses its deadline [10].

We focus on with dynamic priority-based scheduling algo-
rithms in this work. Note that, if ΨL is empty (i.e., no task has
ALAP preference), we can simply adopt the EDF scheduler
to optimally execute all ASAP tasks [10]. Similarly, when
ΨS = ∅ (i.e., no task has ASAP preference), all tasks in Ψ
can be optimally scheduled with the EDL algorithm [5].

In this paper, we consider the cases where Ψ consists of
tasks with different preferences (i.e., both ΨS and ΨL are
non-empty). For such cases, both EDF and EDL can still
feasibly schedule the tasks in Ψ as long as U ≤ 1 [5], [10].
However, without taking tasks’ preferences into consideration,
neither of them can effectively address the different preference
requirements of various tasks.

III. OPTIMAL PREFERENCE-ORIENTED SCHEDULES

Before discussing the proposed scheduling algorithms for
tasks with ASAP and ALAP preferences, in this section, we
first formally define the optimality of different preference-
oriented schedules and investigate their relationships. Consid-
ering the periodicity of the problem, we focus on the schedule
of tasks within the LCM (least common multiple) of their pe-
riods. Intuitively, in an optimal preference-oriented schedule,
a.) tasks with ASAP preference should be executed before
the ones with ALAP preference whenever possible; and b.)
the execution of ALAP tasks should be delayed as much
as possible without causing any deadline miss.

To quantify the early execution of ASAP tasks in ΨS in a
feasible schedule S, the accumulated ASAP execution at any
time t (0 ≤ t ≤ LCM ) is defined as the total amount of
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execution time of ASAP tasks from time 0 to time t in the
schedule S, which is denoted as ∆(S, t). Formally, we have

∆(S, t) =
t∑

z=0

δ(S, z) (1)

where δ(S, z) = 1 if S(z) = Ti and Ti ∈ ΨS ; otherwise,
δ(S, z) = 0.

Similarly, the accumulated ALAP execution of tasks in ΨL

is defined as the total amount of execution time of ΨL’s tasks
from time t to LCM in a feasible schedule S and is denoted
as Ω(S, t). Formally,

Ω(S, t) =
LCM−1∑

z=t

ω(S, z) (2)

where ω(S, z) = 1 if S(z) = Ti and Ti ∈ ΨL; otherwise,
ω(S, z) = 0.

When only ASAP or ALAP tasks are of interest in a given
task set, we first define the ASAP and ALAP optimalities of
a schedule based on the above notations.

Definition 1 (ASAP-optimality): A feasible schedule
Sopt
asap is ASAP-optimal if, for any other feasible schedule S,

∆(Sopt
asap, t) ≥ ∆(S, t) at any time t (0 ≤ t ≤ LCM ).

Definition 2 (ALAP-optimality): A feasible schedule
Sopt
alap is ALAP-optimal if, for any other feasible schedule S,

Ω(Sopt
alap, t) ≥ Ω(S, t) at any time t (0 ≤ t ≤ LCM ).

Since it is possible to have conflicting demands from ASAP
and ALAP tasks (as discussed below), when considering
the preference requirements of all tasks, we define the
preference-oriented (PO) optimality of a schedule as follows.

Definition 3 (PO-optimality): A feasible schedule Sopt is
PO-optimal if, at any time t (0 ≤ t ≤ LCM ),

• a) Ω(Sopt, t) ≥ Ω(Sopt
asap, t) holds, where both Sopt and

Sopt
asap are ASAP-optimal (denoted as POS-optimal); or

• b) ∆(Sopt, t) ≥ ∆(Sopt
alap, t) holds, where both Sopt and

Sopt
alap are ALAP-optimal (denoted as POL-optimal).

Note that PO-optimal schedules are defined based on the
accumulated executions of ASAP and ALAP tasks without
distinguishing the execution orders of tasks with the same
preference. That is, when determining the optimality of a
feasible schedule, we essentially divide the schedule into a
sequence of ASAP and ALAP execution sections. Hence, pro-
vided that there is no deadline miss, switching the execution
order of some task instances with the same preference in their
execution sections will not affect the optimality of a feasible
schedule. Therefore, as shown later, more than one optimal
schedule may exist for a set of periodic tasks with ASAP and
ALAP preferences.

Moreover, the optimal schedules highly depend on the
system utilization of a given task set. In what follows, we

investigate the relationship between different optimal sched-
ules of tasks with ASAP and ALAP preferences based on
system utilization. This investigation gives a foundation for
the preference-oriented execution framework and provides
insightful guidelines to develop optimal preference-oriented
schedulers as shown later.

A. Harmonious Optimal Schedules: Fully-Loaded Systems

When the system utilization of a task set is U = 1, we
know that the processor will be fully loaded and there is no
idle time in any feasible schedule [10]. Therefore, if a feasible
schedule S is an ASAP-optimal schedule (i.e., the execution
of tasks with ASAP preference in ΨS is performed at their
earliest possible time), it also implies that the execution of
tasks with ALAP preference in ΨL has been maximally
delayed at any time instance. Therefore, the feasible schedule
S is an ALAP-optimal schedule as well. More formally, we
can have the following lemma.

Lemma 1: For a set of periodic tasks with ASAP and ALAP
preferences where the system utilization is U = 1, if a feasible
schedule Sopt is an ASAP-optimal schedule, it is also an
ALAP-optimal schedule. That is, Sopt is both POS-optimal
and POL-optimal. Hence, Sopt is a PO-optimal schedule for
the task set under consideration.

Proof: When the system utilization U = 1, we know that
the system is fully loaded and there is no idle time in the
schedule Sopt. Therefore, for any time t (0 ≤ t ≤ LCM ),
the overall execution time for tasks in ΨL from time 0 to t
in the schedule Sopt can be found as (t−∆(Sopt, t)), where
∆(Sopt, t) represents the accumulated execution time for tasks
in ΨS from time 0 to t.

Note that, for a given task set, the total execution time
for tasks with ALAP preference in ΨL within a LCM is
fixed, which can be denoted as ttotalalap . Thus, the accumulated
execution time for ALAP tasks in ΨL from time t to LCM
in any feasible schedule S can be found as:

Ω(S, t) = ttotalalap − (t−∆(S, t))

Since Sopt is also a feasible schedule, we have:

Ω(Sopt, t) = ttotalalap − (t−∆(Sopt, t))

As Sopt is an ASAP-optimal schedule, from Definition 1,
for any feasible schedule S, we have ∆(Sopt, t) ≥ ∆(S, t).
Therefore, from the above equations, we can get:

Ω(Sopt, t) ≥ ttotalalap − (t−∆(S, t)) = Ω(S, t)

From Definition 2, we know that Sopt is also an ALAP-optimal
schedule. Therefore, from Definition 3, Sopt is a PO-optimal
(essentially both POS-optimal and POL-optimal) schedule for
the task set under consideration. This concludes the proof.
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B. Discrepant Optimal Schedules: Under-Utilized Systems

For task sets with system utilization U < 1, the processor
will not be fully loaded and there will be idle intervals in any
feasible schedule. However, the conflicting requirements of
ASAP and ALAP tasks make the distribution of these intervals
an intriguing problem. Intuitively, for ASAP tasks in ΨS , such
idle intervals should appear as late as possible; whereas for
ALAP tasks in ΨL, they should appear as early as possible in
a feasible schedule.
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c. An ASAP-optimal schedule obtained under SEED

Fig. 1. An example task system with discrepant PO-optimal schedules; Here,
Ψ = {T1(1, 3), T2(1, 4), T3(1, 6)}; ΨS = {T1} and ΨL = {T2, T3}.

To illustrate the discrepancies between POS-optimal and
POL-optimal schedules for task systems with U < 1, we
consider an example task set with three tasks, where T1 =
(1, 3), T2 = (1, 4) and T3 = (1, 6). Here, task T1 has ASAP
preference while T2 and T3 have ALAP preference. That is,
ΨS = {T1} and ΨL = {T2, T3}. It can be easily found that the
system utilization is U = 0.75 and the least common multiple
of all tasks’ periods is LCM = 12. Therefore, for any feasible
schedule within LCM , the amount of idle time can be found
as (1− U) · LCM = (1− 0.75) · 12 = 3.

First, for the schedule in Figure 1a, we can see that
all instances of the ASAP task T1 are executed right after
their arrival times. That is, it is an ASAP-optimal schedule.
Moreover, for all possible executions of the ALAP tasks T2

and T3 in ASAP-optimal schedules, the one as shown in
Figure 1a has been maximally delayed with most of T2 and
T3’s instances are executed right before their deadlines. It turns
out that it is actually a POS-optimal schedule.

Note that, the schedule in Figure 1a is not ALAP-optimal.
By further delaying the execution of task T2’s first instance
T2,1 for one more unit, we can obtain another feasible schedule
as shown in Figure 1b, which turns out to be another PO-
optimal (specifically, POL-optimal) schedule.

Here, we can see that there are discrepancies with the
execution of ASAP and ALAP tasks during the interval [2, 5)
between different PO-optimal schedules. Such discrepancies
come from the conflicting demands from the ASAP task T1

and ALAP task T2, where both of their active instances at time

3 ideally should be executed in time slot [3, 4) to optimally
satisfy preferences, respectively.

Therefore, for under-utilized systems, it is possible to have
discrepant PO-optimal schedules due to the conflicting de-
mands of ASAP and ALAP tasks for their executions and
thus their conflicting requirements for the idle times in feasible
schedules. We now state this observation.

Remark 1: For a set of periodic tasks with ASAP and
ALAP preferences, if the system is under-utilized with U < 1,
there may exist discrepancies between the execution of ASAP
and ALAP tasks in different PO-optimal (i.e., POS-optimal and
POL-optimal) schedules.

IV. AN OPTIMAL SCHEDULER FOR SYSTEMS WITH U = 1

Intuitively, when designing preference-oriented scheduling
algorithms, there are two basic principles to address the pref-
erence requirements of ASAP and ALAP tasks, respectively.

• P1 (ASAP Scheduling Principle): at any time t, if there
are ready ASAP tasks in ΨS , the scheduler should not let
the processor idle – however, it may have to first execute
some ALAP tasks in ΨL to meet their deadlines.

• P2 (ALAP Scheduling Principle): at any time t, if
all ready tasks belong to ΨL, the scheduler should not
execute these tasks and let the processor stay idle if it is
possible to do so without causing any deadline miss for
current and future task instances.

These two principles can have conflicts at run time (from
Remark 1) and a scheduler may have to choose to favor
one over the other. However, for fully-loaded systems, we
know that their PO-optimal schedules are harmonious (see
Lemma 1). Hence, if the ASAP scheduling principle is fully
complied with when scheduling tasks in such systems, it
means that the ALAP scheduling principle is (implicitly)
respected as well. Therefore, by focusing on ASAP tasks and
adhering to the first principle, we first propose in this section
an optimal preference-oriented scheduling algorithm, namely
ASAP-Ensured Earliest Deadline (SEED), for fully-loaded
systems. In Section V, by explicitly taking both ASAP and
ALAP scheduling principles into consideration, a generalized
preference-oriented scheduler is devised, which can obtain a
PO-optimal schedule for any schedulable task set.

A. SEED Scheduling Algorithm

SEED is a dynamic priority scheduling algorithm where
tasks with earlier deadlines have in general higher priorities
(when there is a tie, the task with smaller index has higher
priority). However, instead of scheduling the tasks solely based
on their deadlines, SEED puts tasks with ASAP preference in
the center stage when making scheduling decisions to fully
comply with the ASAP scheduling principle.

The main steps of SEED are summarized in Algorithm 1,
which can be invoked on different occasions: a) a new task
arrives; b) the current task completes or is preempted. At any
invocation time t, we use two ready queues QS(t) and QL(t)
to manage active ASAP and ALAP tasks, respectively.
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Algorithm 1 The SEED Scheduling Algorithm
1: //The invocation time of the algorithm is denoted as t.
2: Input: QS(t) and QL(t);
3: if ( QS(t) == ∅ OR QL(t) == ∅) then
4: if (QS(t)! = ∅) then
5: Tk =Dequeue(QS(t)) and execute Tk;
6: else if (QL(t)! = ∅) then
7: Tl =Dequeue(QL(t)) and execute Tl;
8: else
9: Let CPU idle; //QS(t) = QL(t) = ∅;

10: end if
11: else if (dk > dl) then
12: //Tk =Header(QS(t)) and Tl =Header(QL(t));
13: Construct the look-ahead queue Qla for interval [t, dk];
14: Mark(t, dk,Qla);//determine reserved sections in [t, dk];

//Suppose the first “reserved”/”free” section ends at t′;
15: if ([t, t′] is marked as “reserved”) then
16: Tl =Dequeue(QL(t)) and execute Tl;
17: else
18: Tk =Dequeue(QS(t)) and execute Tk;
19: end if
20: else
21: Tk =Dequeue(QS(t)) and execute Tk;
22: end if

Recall that, from the definitions in Section III, the optimality
of a feasible schedule for a given set of periodic tasks with
ASAP and ALAP preferences depends on only the accumu-
lated executions of such tasks rather than when each individual
task is executed. Therefore, tasks in both queues are ordered
and processed in the decreasing order of their priorities. We
assume that SEED is invoked after newly arrived tasks are
added to their corresponding queues at any time t (which is
not shown for brevity).

For fully-loaded systems, it is not possible to have both
ready queues be empty when SEED is invoked. However,
for the discussion later on applying SEED to under-utilized
systems, such a case is included (line 9) when there is no
active task and CPU should be idle. If there is only one empty
ready queue, it means that all active tasks have either ASAP
or ALAP preference and there is no conflicting requirement at
time t. For such cases, the active task with the earliest deadline
is executed (lines 5 and 7).

The complicated case comes when there are both active
ASAP and ALAP tasks. Here, according to the ASAP schedul-
ing principle, SEED should execute first the highest priority
task Tk in QS(t) whenever possible. If Tk’s deadline is no
later than that of QL(t)’s header task, Tk can be executed
immediately (line 21). Otherwise, to find out whether Tk can
be executed at time t without causing any deadline miss, as
the centerpiece of the SEED scheduler, the handling of this
special case has the following steps.

First, we determine the look-ahead interval as [t, dk], where
dk is Tk’s current deadline. Note that, to meet its deadline, the
(remaining) execution of Tk has to be performed within the in-

Algorithm 2 The function Mark(t, dk,Qla)
1: Input: [t, dk], the look-ahead interval; Qla, the queue of

task instances in Ψla(t, dk) with decreasing priority order;
2: while (Qla ̸= ∅) do
3: Ti = Dequeue(Qla);//Ti has the highest priority with di
4: //Suppose the (remaining) execution time of Ti is ci;
5: if (Ti ∈ ΨL) then
6: For the free sections in [t, di], in the reverse order of

their appearance, mark them as “reserved”, where
the marked sections have the length of ci;

7: else
8: //Suppose Ti arrives at time ai (after time t); and
9: //the total length of free sections in [ai, di] is L;

10: if (ci ≤ L) then
11: Mark the free sections in [ai, di] as “reserved”,

where the marked sections have the length of ci;
12: else
13: Mark all free sections in [ai, di] as “reserved”;
14: For the free sections in [t, ai], in the reverse order

of their appearance, mark them as “reserved”,
where marked sections have the length of (ci−L);

15: end if
16: end if
17: end while

terval [t, dk]. Moreover, at/after time t, only the task instances
(including the future arrivals) that have higher priorities than
Tk may execute before dk and affect Tk’s execution. As the
second step, we find these task instances that form a look-
ahead set Ψla(t, dk); and, in the order of their priorities, put
them into a look-ahead queue Qla (line 13). More formally,
Ψla(t, dk) is defined as:

Ψla(t, dk) = {Ti,j |(Ti,j ∈ QL(t) ∨ ai,j > t) ∧ di,j < dk} (3)

where ai,j is the arrival time of a future task instance Ti,j .
That is, Ψla(t, dk) includes both the active ALAP tasks in
QL(t) and future task instances that have earlier deadlines
than dk. Essentially, Ψla(t, dk) contains all task instances that
can prevent Tk from being executed immediately at time t.

Then, for the look-ahead interval [t, dk], the reserved sec-
tions for task instances in Ψla(t, dk) are determined with the
help of the function Mark(t, dk,Qla) (line 14). There are two
possibilities for the result as illustrated in Figure 2. If the first
section [t, t′] is marked as “reserved”, it means that some
active ALAP tasks have to be executed immediately to avoid
deadline misses (line 16). Otherwise, Tk can be executed right
away at time t (line 18). Note that, the execution of Tk: a)
may complete or be preempted due to the arrival of a new
task instance before time t′; or b) has to stop at time t′ due
to the timing constraints of other task instances.

Algorithm 2 further details the steps of Mark(t, dk,Qla).
Again, the objective of this function is to determine whether
it is possible to execute task Tk at time t. Thus, we just
need to find out the location of the reserved sections rather
than to generate the schedule for the task instances in Qla
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within the interval [t, dk]. Therefore, in decreasing order of
their priorities, the task instances in Qla are handled one at a
time as discussed below (lines 2 and 3).

t’

y dx dy

dk

TyTy

t

xT Ty

a

a. Qla = {Tx, Ty}, where the first section is “free”;

t’

yaz dx dy dz

dk

yTT z zTTy

t

xT TyT z

a

b.Qla = {Tx, Ty, Tz} and the first section is “reserved”;

Fig. 2. The marking of the look-ahead interval.

If Ti is an ALAP task instance, in the backward order, we
mark the free sections before di as “reserved”. Here, a free
section may be divided into pieces and the total length of the
marked sections should equal to Ti’s (remaining) execution
time ci (line 6). If Ti is a future task instance, the backward
marking process may use free sections before its arrival time
ai. Note that this does not mean that we need to execute a
task instance before its arrival, but merely indicates that the
marked sections before ai have to be reserved for the task
instances in Qla.

As an example, suppose that there are two ALAP task
instances in Qla, where Tx has an earlier deadline and Ty

is a future task instance that arrives at time ay(> t). Since Tx

has a higher priority, it first marks the section of size cx right
before its deadline dx as “reserved” as shown in Figure 2a.
Then, for Ty , its execution time cy is larger than the free
section within [ay, dy]. In this case, it will first mark the free
section within [ay, dy] and then part of the free section before
ay as “reserved”. As there is no other task instance in Qla,
the first section [t, t′] is left as “free”. Therefore, even though
its deadline dk is later than that of the ALAP task Tx, Tk can
be executed right away at time t (up to the time point t′).

If the next task instance Ti in Qla is an ASAP task, it
must arrive after time t and have its deadline before dk (i.e.,
ai > t and di < dk). For the free sections within [ai, di],
if their overall size L is no smaller than Ti’s execution time
ci, we mark them as “reserved” in the forward order such
that the marked sections have the total length of ci (line
11). Otherwise, all the free sections within [ai, di] will be
marked as “reserved” (line 13). Then, similar to the handling
of ALAP tasks, the free sections before ai will be reserved in
the backward order for the amount of ci − L (line 14).

Continuing with the example in Figure 2a, suppose that
there is one more ASAP task instance (Tz) in Qla, where
dy < dz . As the free section within [az, dz] is not large
enough, it turns out that Tz marks all free sections before
dz as shown in Figure 2b, where the first section [t, az] is
“reserved”. That is, to guarantee that there is no deadline
miss for the task instances in Qla, we have to execute Tx

(and even Ty) immediately at time t. However, such urgent
execution will be preempted when a new task Tz arrives at
the nearest future time az by re-invoking the SEED scheduler.

B. Optimality of the SEED Scheduler

In this section, we provide formal analysis and proof for
the optimality of the SEED scheduling algorithm. Specifically,
we first show that, for any schedulable task set with system
utilization U ≤ 1, the SEED scheduler can successfully
schedule all tasks and guarantee that there is no deadline miss.
Then, we prove that, for any schedulable task set, SEED will
generate an ASAP-optimal schedule. This further implies that,
for fully-loaded task systems, SEED is essentially an optimal
preference-oriented scheduler.

From Algorithm 1, we can see that SEED follows the
earliest deadline first (EDF) principle when scheduling tasks
with the same preference. Specifically, where all active tasks
have the same preference, the task with the earliest deadline
will be executed (lines 5 and 7 for ASAP and ALAP tasks,
respectively). For cases where active tasks have different
preferences, the look-ahead interval is determined by an
earliest deadline ASAP task. Therefore, if the initial part of
the look-ahead interval is “free”, the earliest deadline ASAP
task is executed (line 18); otherwise, if the initial part is
“reserved”, the earliest deadline ALAP task will be executed
(line 16). Hence, we can have the following lemma:

Lemma 2: At any time t, the SEED scheduler executes
tasks with the same preference according to the earliest
deadline first (EDF) principle. That is, whenever SEED
executes an ASAP (or ALAP) task, the task should have the
earliest deadline among all active ASAP (or ALAP) tasks.

Hence, before a task Tk completes its execution, no other
task with the same preference but a later deadline can be
executed within the interval [rk, dk], where rk and dk are Tk’s
arrival time and deadline, respectively. From Algorithm 1, we
can further get the following lemma:

Lemma 3: Suppose that a task Tk misses its deadline at
time dk, no task that has a deadline later than dk can be
executed within [rk, dk] under SEED.

Proof: If Tk is an ASAP task, from Lemma 2, we know
that no ASAP task with a deadline later than dk can be
executed within [rk, dk]. Moreover, from Algorithm 1, we
know that no ALAP task with a deadline later than dk will
be in the look-ahead task queue Qla when SEED is invoked
at time t, where (rk ≤ t ≤ dk). Therefore, no task with a
deadline later than dk can be executed within [rk, dk] when
Tk is an ASAP task.

When Tk is an ALAP task, from Lemma 2, we know that
no ALAP task with a deadline later than dk can be executed
within [rk, dk]. Moreover, from Algorithms 1 and 2, we know
that the execution of any ASAP task with a deadline later
than dk within [rk, dk] would indicate that enough time has
been reserved for task Tk before dk, which contradicts with
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our assumption that Tk misses its deadline. Therefore, no task
with a deadline later than dk can be executed within [rk, dk]
when Tk is an ALAP task.

To conclude, if a task Tk misses its deadline at time dk,
no task (regardless of its preference) that has a deadline later
than dk can be executed within [rk, dk] under SEED.

From Lemma 3 and Algorithms 1 and 2, we can get the
following theorem regarding to the schedulability of tasks
under SEED:

Theorem 1: For a set of periodic tasks with ASAP and
ALAP preferences where U ≤ 1, the SEED scheduler can
successfully schedule all tasks without missing any deadline.

Proof: Suppose that a job Jk arrives at time rk and misses
its deadline at dk. From Lemma 3, we know that there is no
job with a deadline later than dk can be executed within the
interval [rk, dk], which is defined as the problematic interval.

Let t0 denote the last processor idle time before dk. Note
that, there must exist jobs with deadlines later than dk that are
executed before rk. Otherwise, we can find that the processor
demand in [t0, dk], defined as the sum of the computation
times of all jobs that arrive no earlier than t0 and have
deadlines no later than dk [2], is more than (dk − t0), which
contradicts with the condition of U ≤ 1.

Moreover, there must exist jobs that arrives before rk with
deadlines earlier than dk and are executed in [rk, dk] (other-
wise, there will be a contradiction for the processor demand
within the interval [rk, dk]). Suppose r0 is the earliest arrival
time of such jobs, we can extend backward our problematic
interval to be [r0, dk].

Following the above steps, we can finally extend our prob-
lematic interval to be [t0, dk], which indicates that there is no
job with a deadline later than dk that has been executed before
rk. This contradicts with our earlier findings that there must
exist jobs with deadlines later than dk that are executed before
rk, and thus concludes the proof.

Theorem 2: For a set of periodic tasks with ASAP and
ALAP preferences where the system utilization is U ≤ 1, the
generated schedule under SEED is an ASAP-optimal schedule
and SEED is an ASAP-optimal scheduler.

Proof: Suppose that the schedule Sseed obtained under
SEED for the tasks being considered is not an ASAP-optimal
schedule. There must exist another feasible schedule S such
that ∆(S, t) ≥ ∆(Sseed, t) (0 ≤ t ≤ LCM ). Moreover, there
must exist at least one interval during which ASAP tasks are
executed in S but not in Sseed. Assume [t1, t2] (0 ≤ t1 <
t2 ≤ LCM ) is the first of such intervals. That is, during the
interval [0, t1], S and Sseed must execute ASAP tasks for the
same amount and at the same time.

As there are active ASAP tasks during [t1, t2], from Al-
gorithm 1, we know that SEED must have executed ALAP
tasks during [t1, t2] and such ALAP tasks (which form a set
Φ) have to be executed during [t1, t2] to meet their deadlines.
Since SEED is a work-conserving scheduler and it executes

ALAP tasks in the order of their deadlines, the total amount
of execution time for ALAP tasks in Φ during [0, t1] in the
schedule S will be no more than that of Sseed. Therefore, such
ALAP tasks in Φ have to be executed during [t1, t2] in the
schedule S as well to meet their deadlines, which contradicts
with our assumption and thus concludes the proof.

From Theorem 2 and Lemma 1, for systems with U = 1,
SEED is essentially an optimal preference-oriented scheduler.
Thus, we have the following theorem.

Theorem 3: For a fully loaded set of periodic tasks with
ASAP and ALAP preferences where U = 1, SEED is the
optimal preference-oriented scheduler and the generated SEED
schedule is an optimal preference-oriented schedule.

C. Improved SEED Algorithm and Its Complexity

From Algorithms 1 and 2, we can see that the most complex
case happens when the deadline of the highest priority ASAP
task is later than that of the highest priority ALAP task. To
determine whether it is possible to first execute the ASAP
task and comply with the ASAP scheduling principle, SEED
needs to consider all (active and future) task instances within
the look-ahead interval. However, the Mark() function in
Algorithm 2 is computationally costly by requiring every task
instance in Qla to search through the look-ahead interval and
mark all corresponding reserved sections.

Note that, except the first (free/reserved) section, SEED does
not need the detailed information about other sections within
the look-ahead interval. Essentially, the only information that
SEED needs is how much time (if any) it can use to safely
execute the the highest priority ASAP task Tk at the invocation
time t without causing any deadline miss in the future.

From the discussion of Algorithm 2, we know that, when
the first section is “reserved”, it indicates there is no available
time for task Tk at time t. In this case, there must exist at least
one task instance Tx ∈ Qla for which there is no free section
between t and Tx’s deadline dx. That is, the accumulated
workload W (dx,Qla) for task instances in Qla that has to
be done before dx is (dx − t), where

W (dx,Qla) =
∑

Ti∈Qla∧di≤dx

ci (4)

Otherwise, the size of the first “free” section can be found as

tfree = min{(dx − t)−W (dx,Qla)|∀Tx ∈ Qla} (5)

Therefore, based on the above two equations, the process
of determining the status of the first section can be simplified.
Here, tfree = 0 indicates the first section is “reserved”, while
tfree > 0 represents the size of the first “free” section.

Suppose that the minimum and maximum periods of tasks
are pmin and pmax, respectively. In the worst case, the look-
ahead interval can be as large as pmax. Moreover, the worst
case number of task instances in Qla can be found as n · pmax

pmin
.

Hence, by checking the accumulated workload that has to be
done before the deadline of each task instance in Qla, tfree
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can be found in O
(
n · pmax

pmin

)
, which is also the complexity

of the SEED scheduler.

D. SEED for Under-Utilized Systems

Although SEED can generate a PO-optimal schedule for
any fully-loaded task system, for the ones with U < 1, the
schedules obtained under SEED are only ASAP-optimal (see
Theorem 2). From Algorithm 1, we can see that the processor
will not be idle under SEED if there is any active (ASAP
or ALAP) task. That is, SEED adopts the work-conserving
approach, which conflicts with the ALAP scheduling principle
when a task system is not fully-loaded.

For the example task set discussed earlier in Section III,
following the steps in Algorithms 1 and 2, its SEED schedule
can be found as shown in Figure 1c. Here, we can see
that, all instances of the ASAP task T1 are also executed
right after their arrival times (i.e., the SEED schedule is
an ASAP-optimal schedule). However, the work-conserving
property of SEED (which is critical to ensure its ASAP
optimality) also forces it to execute the ALAP tasks T2 and T3

earlier. Such early executions of T2 and T3 make the resulting
SEED schedule inferior to the POS-optimal schedule shown
in Figure 1a.

V. PREFERENCE-ORIENTED SCHEDULING ALGORITHM

Therefore, to comply with the ALAP scheduling principle,
we need to judiciously let the processor idle for under-utilized
systems even if there are active ALAP tasks. By extending
the central ideas of SEED and explicitly taking the ALAP
scheduling principle into consideration, in this section, we
propose a generalized Preference-Oriented Earliest Deadline
(POED) scheduling algorithm, which can obtain a PO-optimal
schedule for any schedulable task system as shown later.

Here, to manage the idle times and appropriately delay the
execution of ALAP tasks without causing any deadline miss,
we augment a under-utilized task set Ψ (i.e., U < 1) with
a dummy task T0 that has period p0 and utilization as u0 =
(1−U). That is, after the augmentation, we have the task set as
Ψ = (Ψ ∪ {T0}) with U = 1. Moreover, in order to postpone
the execution of ALAP tasks with the help of dummy task T0,
we assume that T0 has ASAP preference.

Note that, different from other real ASAP tasks, the ob-
jective of the dummy task is to (periodically) introduce idle
times into the schedule and thus to delay the execution of
ALAP tasks. Therefore, when there are active real ASAP tasks,
the idle times introduced by the dummy task should not be
inserted to comply with the ASAP scheduling principle even
if the current dummy task instance has an earlier deadline.

From another perspective, we can consider the idle times as
system slack, which can be borrowed (reclaimed) by the real
ASAP tasks for early executions. To systematically manage
system slack (i.e., idle times) and enable appropriate schedul-
ing of such idle intervals at runtime, we adopt the wrapper-task
mechanism studied in our previous work [15].

Essentially, a wrapper-task WT represents a piece of slack
with two parameters (c, d), where size c denotes the amount

of slack and deadline d equals to that of the task giving rise to
this slack. For the dummy task T0, there is no real workload
and its execution time will be converted to slack whenever it
arrives. At any time t, wrapper-tasks are kept in a separate
wrapper-task queue QWT (t) with increasing order of their
deadlines. At runtime, wrapper-tasks compete for the processor
with other active tasks based on their priorities (i.e., deadlines).

When a wrapper-task has the earliest deadline, it actually
wraps the execution of the highest priority ASAP task (if any)
by lending its allocated processor time to the ASAP task and
pushing forward the slack; if there is no active ASAP task, the
slack is consumed and an idle interval appears. The detailed
discussions of wrapper-tasks can be found in [15], and we list
below two basic operations that are used in this work:

• AddSlack(c, d): create a wrapper-task WT with param-
eters (c, d) and add it to QWT (t). Here, all wrapper-
tasks represent slack with different deadlines. Therefore,
WT may need to merge with an existing wrapper-task in
QWT (t) if they have the same deadline;

• RemoveSlack(c): remove wrapper-tasks from the front of
QWT (t) with accumulated size of c. The last one may
be partially removed by adjusting its remaining size.

Algorithm 3 The POED Scheduling Algorithm
1: //The invocation time of the algorithm is denoted as t.
2: Input: QS(t), QL(t) and QWT (t);
3: if (CPU idle or wrapped-execution occurs in [tl, t]) then
4: RemoveSlack(t− tl);//tl is previous scheduling time
5: if (The execution of an ASAP task Tk is wrapped) then
6: AddSlack(t− tl, dk);//push forward the slack
7: end if
8: end if
9: if (new dummy task arrives at time t) then

10: AddSlack(c0, t+ p0);//add new slack
11: end if
12: //suppose that Tk, Tj and WTx are the header tasks of
13: //QS(t), QL(t) and QWT (t), respectively
14: if (QS(t)! = ∅) then
15: Determine/mark look-ahead interval: [t,min(dx, dk)];
16: if (the first interval [t, t′] is marked “free”) then
17: Execute Tk in [t, t′];//wrapped execution if dx < dk
18: else
19: Execute Tj in [t, t′];//urgent execution of ALAP tasks
20: end if
21: else if (QWT (t)! = ∅) then
22: Determine/mark look-ahead interval: [t, dx];
23: if (the first interval [t, t′] is marked “free”) then
24: Processor idles in [t, t′];//idle interval appears
25: else
26: Execute Tj in [t, t′];//urgent execution of ALAP tasks
27: end if
28: else
29: Execute Tj normally;//only ALAP tasks are active
30: end if
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A. The POED Scheduling Algorithm

With the newly added dummy task, the major steps of
POED are summarized in Algorithm 3. Basically, when mak-
ing scheduling decisions, POED aims at following both ASAP
and ALAP scheduling principles by considering first active
ASAP tasks, then the wrapper-tasks (representing the idle
times) and finally, the active ALAP tasks.

Whenever there are active ASAP tasks, POED tries to
execute them in the first place (lines 14 to 20) by following
the same steps as in SEED. Recall that wrapper-tasks also
compete for processor and may wrap the execution of an
ASAP task when a wrapper-task has the highest priority (line
17). Otherwise, if possible, POED will let the processor idle
by executing wrapper-tasks and consuming slack (lines 21 to
27). Recall that, the dummy task has ASAP preference, which
will be inherited by the wrapper-tasks. Therefore, similar to the
handling other real ASAP tasks, a look-ahead interval needs
to be checked with the corresponding look-ahead task instance
set. Finally, when there are only active ALAP tasks, they are
executed in the order of their priorities (line 29).

B. Analysis of the POED Scheduler

Note that, POED can also schedule task systems with
U = 1. Here, with u0 = 0 for the dummy task, there is
no idle time (i.e., slack) and POED will reduce to SEED.
Moreover, the adopted wrapper-task mechanism for managing
the idle times (slack) under POED does not introduce addi-
tional workload into the system [15]. Therefore, following the
similar reasonings as those for SEED, we can get that there
is no deadline miss under POED for any schedulable (and
augmented) task set (with U ≤ 1).

In addition, to execute the ASAP tasks or wrapper-tasks
(idle times) at earlier times and delay the execution of ALAP
tasks, POED adopts the same steps as in SEED. Therefore,
it has the same complexity as that of SEED, which is
O

(
n · p′

max

pmin

)
where p′max = max{pmax, p0}.

That is, the dummy task’s period can have a significant
impact on the scheduling overhead of POED. Clearly, selecting
smaller periods for the dummy task (when p0 > pmax) can
reduce POED’s scheduling overhead. However, with smaller
dummy task’s periods, the look-ahead interal will be limited
and there may not be enough available idle times to maximally
delay the execution of ALAP tasks, where the result schedule
can be neither ASAP-optimal nor ALAP-optimal.

In contrast, if the dummy task’s period is set as p0 = LCM ,
we can have the longest look-ahead interval, and the schedul-
ing overhead can be significant. However, in this case, we can
always find the longest idle time for the processor whenever
there is no active ASAP task (otherwise, a contradiction can
be easily found based on Equation 5).

Hence, when p0 = LCM , the execution of all ALAP tasks
can be maximally postponed at any time under POED, which
results in an ALAP-optimal schedule for any schedulable
task set (with U ≤ 1). Moreover, from Algorithm 3, we
know that POED also follows ASAP scheduling principle

and will not let the processor idle whenever there are active
ASAP tasks. Therefore, the POED schedule is essentially POL-
optimal when p0 = LCM . In fact, the example in Figure 1b
is such a POED schedule.

VI. EVALUATIONS AND DISCUSSIONS

To evaluate the scheduling overhead and how well tasks’
preference requirements are achieved, we have implemented
the proposed SEED and POED scheduling algorithms and de-
veloped a discrete event simulator using C++. For comparison,
the well-known EDF scheduler is also implemented.

We consider synthetic task sets with up to 100 tasks, where
the utilization of each task is generated using the UUniFast
scheme proposed in [4]. The period of each task is uniformly
distributed in the range of [pmin, pmax]. Each data point in
the figures corresponds to the average result of 100 task sets.

A. Scheduling Overhead

Recall that the complexity of SEED is O
(
n · pmax

pmin

)
, which

depends on both the number of tasks in a task set and tasks’
periods. Here, we fix pmin = 10. With U = 1 and n = 20,
Figure 3a first shows the normalized scheduling overhead of
SEED when varying pmax. The overhead of EDF is used as
the baseline, which depends only on the number of tasks. The
two numbers in the labels represent the numbers of ASAP and
ALAP tasks, respectively. All experiments were conducted on
a Linux box with an Intel Xeon E5507 (2.0GHz) processor.

Not surprisingly, when pmax becomes larger, the normalized
overhead of SEED increases due to larger look-ahead intervals
and more task instances in such intervals. With 20 tasks per
task set, the overhead of SEED can be up to 6 times of that
of EDF when pmax = 100. The actual scheduling overhead of
SEED at each invocation with varying pmax are further shown
in Figure 3b, which is less than 6 microseconds.

Interestingly, different mixes of ASAP and ALAP tasks can
affect SEED’s scheduling overhead as well. When the numbers
of ASAP and ALAP tasks are equal, the scheduling overhead
is much higher than other unbalanced cases. The reason is that,
the probability of having both active ASAP and ALAP task
instances at each scheduling point is higher for such cases,
which require examining the look-ahead intervals.

When pmax = 100, Figure 3c shows scheduling overhead of
SEED with varying number of tasks, where the two numbers
in the labels represent ratio of ASAP over ALAP tasks.
As expected, the overhead increases when there are more
tasks. However, the overhead is manageable with less than
35 microseconds per invocation for up to 100 tasks.

Figure 3d further shows the overhead of POED with varying
p0 for systems with U = 0.8 and n = 20. When p0 increases
and becomes much larger than pmax, POED’s overhead can
become prohibitive. Moreover, when there are more ALAP
tasks, it is more likely to have the look-ahead interval to be
p0, where the overhead is generally higher than other cases.
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B. Fulfillment of Preference Requirements

In Section III, the optimality of a schedule for tasks with
ASAP and ALAP preferences has been defined based on
the accumulated executions of those tasks over sliding time
windows, which is difficult to evaluate. To effectively evaluate
the performance of different schedulers, we define a new
performance metric, denoted as preference value (PV ) for a
periodic task schedule. For a task instance Ti,j that arrives at
time r with a deadline d, the earliest and latest times to start
execution are stmin = r and stmax = d − ci, respectively,
where ci is Ti’s WCET. Similarly, its earliest and latest finish
times are ftmin = r + ci and ftmax = d, respectively.

Suppose that Ti,j starts and completes its execution at time
st and ft, respectively. According to the preference of task
Ti, the preference value for Ti,j is defined as:

PVi,j =

{
ftmax−ft

ftmax−ftmin
if Ti ∈ ΨS ;

st−stmin

stmax−stmin
if Ti ∈ ΨL.

(6)

which has the value within the range of [0, 1]. Here, a larger
value of PVi,j indicates that Ti,j’s preference has been served
better. Moreover, for a given schedule of a task set, the
preference value of a task is defined as the average preference
value of all its task instances. In what follows, we report the
normalized preference values achieved for tasks under SEED
and POED with that of EDF as the baseline.

For fully-loaded systems (i.e., U = 1), Figure 4a shows
the achieved preference values for all and ASAP tasks with
varying ASAP task loads (US), which are labeled as “Overall”
and “ASAP”, respectively. There are 20 tasks per task set (i.e.,
n = 20) and the number of ASAP tasks is proportional to
ASAP loads. For the overall PVs of all tasks, SEED performs
best when there are roughly equal numbers of ASAP and
ALAP tasks (i.e., US = 40%). This is because it is more

likely to have both active ASAP and ALAP tasks at run time
where SEED can better address their preferences through the
look-ahead intervals.

Note that, if there are only ASAP or ALAP tasks in a task
set, SEED essentially reduces to EDF. Therefore, when there
are only a few (US = 10%) or more (US = 90%) ASAP
tasks, SEED performs more closely to EDF as the results show.
Moreover, if only ASAP tasks are of interest, their achieved
PVs with SEED decrease with increasing number of tasks.

For under-utilized systems with U = 0.8, Figure 4b shows
the achieved PVs for all tasks under POED (where p0 = 10)
and SEED. By considering both ASAP and ALAP scheduling
principles, POED achieves much better PVs than SEED that
focuses on only the ASAP scheduling principle. When task
sets contain mostly ALAP tasks with only a few ASAP tasks
(i.e., US = 0.1), POED can achieve close to (more than)
3 times PVs when compared to that of SEED (EDF) since
both SEED and EDF are work-conserving schedulers that have
conflicts with the ALAP scheduling principle. When there are
more ASAP tasks (i.e., larger US), the performance of POED
gets closer to that of SEED.

Figure 4c further shows the achieved PVs for only ASAP
tasks under both SEED and POED when U = 0.8. Clearly,
SEED performs better here as it puts ASAP tasks in the center
stage when making scheduling decisions. More interestingly,
we can see that POED can perform even worse than that of
EDF. The reason could be that, by forcing the processor to
be idle at earlier times, the delayed execution of ALAP tasks
under POED can prevent ASAP tasks from executing early,
especially when most tasks have ASAP preference.

For the case of U = 0.8, Figure 4d shows the achieved
PVs for all tasks with varying period (p0) of the dummy task.
Again, the two numbers in the labels represent the number of
ASAP and ALAP tasks, respectively. Here, we can see that,

10



having larger p0 has very limited improvement on the overall
achieved PVs under POED, except for the cases with more
ALAP tasks where it is more likely to have the dummy task’s
period as the look-ahead interval.

VII. CONCLUSIONS

In this work, we studied novel scheduling algorithms for a
set of periodic tasks with ASAP and ALAP tasks running
on a single processor system. We introduced the concept
of preference-oriented (PO) execution and identified different
types of PO-optimal schedules. For fully-loaded systems, we
showed the harmonicity of different PO-optimal schedules
while there can be discrepancies between them for under-
utilized systems.

Then, focusing on fully-loaded systems, we proposed and
analyzed an optimal preference-oriented scheduling algorithm
(SEED) that explicitly takes the preference of tasks into con-
sideration when making scheduling decisions. Moreover, by
taking the idle times in the schedules of under-utilized systems
into consideration, we proposed a generalized preference-
oriented earliest deadline (POED) scheduling algorithm that
can generate a PO-optimal schedule for any schedulable
task set. The evaluation results show that, with manageable
scheduling overheads (less than 35 microseconds per invo-
cation for up to 100 tasks), SEED and POED can achieve
significantly better (up to three-fold) preference values when
compared to that of EDF.
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APPENDIX
An Application of the POED Scheduler

Reliability and fault tolerance techniques have been the tra-
ditional research focus for computing systems, where systems
may fail due to various reasons. In this section, we consider
a set of period real-time tasks running on a dual-processor
system and investigate efficient techniques to tolerate a single
permanent fault.

A simple and well-studied approach for fault tolerance
would be hot-standby, where two copies of the same task run
concurrently and simultaneously on two processors. However,
such an approach has the 100% execution overhead and is
quite costly. There have been several studies [14] on reducing
such overheads, including the Standby-Sparing (SS) technique
in our recent work [9].
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Fig. 5. An example with two tasks: T1 = (3, 5) and T2 = (3, 10).

A. An Example

Before formally presenting the POED-based fault tolerance
technique, we first look at a concrete example. Consider two
periodic tasks T1 = (3, 5) and T2 = (3, 10) to run on
a dual-processor system. Each (primary) task will have a
corresponding backup task with the same timing parameters.
To tolerate a single permanent fault, the primary and backup
copies of the same task should be executed on different
processors.

In the Standby-Sparing technique [9], all primary tasks
run on a (primary) processor, while backup tasks run on
another (spare) processor, as shown in Figure 5a. To reduce
the overlapped executions of primary and backup copies of the
same task (and thus the overhead), primary tasks are scheduled
according to EDF while backup tasks are delayed as much
as possible according to EDL. Note that, when there is no
failure during a task’s execution, its delayed backup copy will
be cancelled (e.g., to save energy [9], [14]).
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Suppose that there is no failure during the execution of the
tasks in the above example. Then the corresponding schedule
within the LCM is shown in Figure 5a, where the cancelled
(partial) backup (or primary) copies are marked with “X”.
Here, we can see that, there are five (5) units of overlapped
or wasted executions. With nine (9) units of total workload of
the two tasks within a LCM, the execution overhead under the
Standby-Sparing technique is 5

9 = 56%.
Instead of dedicating a processor as the spare, we can

schedule the primary and backup copies of tasks in a mixed
manner. For the example, we can schedule the primary copy
of task T1 and backup copy of task B2 on the first processor
and so on, as shown in Figure 5b. Here, the mixed task set
on each processor are scheduled with the POED scheduler,
where primary and backup copies of tasks have ASAP and
ALAP preferences, respectively. In this case, when there is
no failure during tasks’ execution, there are only 3 units of
overlapped or wasted execution. This leads to the execution
overhead as 3

9 = 33%, a 23% reduction compared to that of
the Standby-Sparing technique.

B. POED-based Fault-Tolerance and Evaluations

We have studied the POED-based fault-tolerance scheme
(for energy efficiency) in our recent workshop paper [8]. The
basic steps can be summarized as follows:

• Step 1: Map primary copies of tasks to the two processors
(e.g., according to the worst-fit decreasing heuristic) and
mark them as ASAP tasks;

• Step 2: Allocate the backup copy of each task to the
other processor tasks’ and mark all the backup tasks as
ALAP tasks.

Once the primary and backup copies of tasks are allocated to
processors, POED can be applied on each processor to reduce
their overlapped executions.
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Fig. 6. Execution overheads for POED-based and Standby-Sparing schemes.

Figure 6 shows the execution overheads for the POED-
based and Standby-Sparing schemes under different system
loads with different numbers of tasks per task set. Here, we
can see that, when the system load is low (i.e., U ≤ 0.7),
almost all backup copies can be cancelled under both schemes
and, the execution overhead is close to 0. However, when the
system load is high (e.g., U ≥ 0.95), the overhead of the
POED-based scheme can be substantially lower than that of
Standby-Sparing, especially for cases with only a few tasks.
The reason is that, the locations of the backup copies of tasks
are fixed according to EDL with the Standby-Sparing scheme.
However, in the POED-based scheme, cancelled backup copies
generate slack, which is exploited at run time to further delay
the execution of future backup tasks. More detailed results and
discussions can be found in [8].
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